Archive for the ‘Quantum Computing’ Category

Apple is already defending iMessage against tomorrow’s quantum computing attacks – The Verge

Apples security team claims to have achieved a breakthrough that advances the state of the art of end-to-end messaging. With the upcoming release of iOS 17.4, iPadOS 17.4, macOS 14.4, and watchOS 10.4, the company is bringing a new cryptographic protocol called PQ3 to iMessage that it purports to offer even more robust encryption and defenses against sophisticated quantum computing attacks.

Such attacks arent yet a broad threat today, but Apple is preparing for a future where bad actors try to unwind current encryption standards and iMessages security layers with the help of massively powerful computers. Such scenarios could start playing out by the end of the decade, but experts agree that the tech industry need to start defending against them well in advance.

PQ3 is the first messaging protocol to reach what we call Level 3 security providing protocol protections that surpass those in all other widely deployed messaging apps, the security team wrote. Yes, Apple came up with its own ranking system for messaging service security, and iMessage now stands alone at the top thanks to these latest PQ3 advancements.

In the companys view, theyre enough to put Apples service above Signal, which itself recently rolled out more sophisticated security defenses. (For reference, the current version of iMessage ranks as level 1 alongside WhatsApp, Viber, Line, and the older version of Signal.) More than simply replacing an existing algorithm with a new one, we rebuilt the iMessage cryptographic protocol from the ground up to advance the state of the art in end-to-end encryption, Apple wrote.

Apple says that hackers can stow away any encrypted data they obtain today in hopes of being able to break through in several years once quantum computers become a realistic attack vector:

Although quantum computers with this capability dont exist yet, extremely well-resourced attackers can already prepare for their possible arrival by taking advantage of the steep decrease in modern data storage costs. The premise is simple: such attackers can collect large amounts of todays encrypted data and file it all away for future reference. Even though they cant decrypt any of this data today, they can retain it until they acquire a quantum computer that can decrypt it in the future, an attack scenario known asHarvest Now, Decrypt Later.

You can read all the nitty-gritty details on PQ3 in Apples blog post, which is a great example of the companys focus on protecting user data. And as weve learned in recent months, Apple wont hesitate to shut out third parties even those with well-meaning intentions that attempt to encroach on its iPhone-selling messaging platform in any way.

See the article here:
Apple is already defending iMessage against tomorrow's quantum computing attacks - The Verge

Tags:

Error-correction breakthroughs bring quantum computing a step closer – Network World

Error-correction breakthroughs bring quantum computing a step closer  Network World

View post:
Error-correction breakthroughs bring quantum computing a step closer - Network World

Tags:

Quantum computer outperformed by new traditional computing type – Earth.com

Quantum computing has long been celebrated for its potential to surpass traditional computing in terms of speed and memory efficiency. This innovative technology promises to revolutionize our ability to predict physical phenomena that were once deemed impossible to forecast.

The essence of quantum computing lies in its use of quantum bits, or qubits, which, unlike the binary digits of classical computers, can represent values anywhere between 0 and 1.

This fundamental difference allows quantum computers to process and store information in a way that could vastly outpace their classical counterparts under certain conditions.

However, the journey of quantum computing is not without its challenges. Quantum systems are inherently delicate, often struggling with information loss, a hurdle classical systems do not face.

Additionally, converting quantum information into a classical format, a necessary step for practical applications, presents its own set of difficulties.

Contrary to initial expectations, classical computers have been shown to emulate quantum computing processes more efficiently than previously believed, thanks to innovative algorithmic strategies.

Recent research has demonstrated that with a clever approach, classical computing can not only match but exceed the performance of cutting-edge quantum machines.

The key to this breakthrough lies in an algorithm that selectively maintains quantum information, retaining just enough to accurately predict outcomes.

This work underscores the myriad of possibilities for enhancing computation, integrating both classical and quantum methodologies, explains Dries Sels, an Assistant Professor in the Department of Physics at New York University and co-author of the study.

Sels emphasizes the difficulty of securing a quantum advantage given the susceptibility of quantum computers to errors.

Moreover, our work highlights how difficult it is to achieve quantum advantage with an error-prone quantum computer, Sels emphasized.

The research team, including collaborators from the Simons Foundation, explored optimizing classical computing by focusing on tensor networks.

These networks, which effectively represent qubit interactions, have traditionally been challenging to manage.

Recent advancements, however, have facilitated the optimization of these networks using techniques adapted from statistical inference, thereby enhancing computational efficiency.

The analogy of compressing an image into a JPEG format, as noted by Joseph Tindall of the Flatiron Institute and project lead, offers a clear comparison.

Just as image compression reduces file size with minimal quality loss, selecting various structures for the tensor network enables different forms of computational compression, optimizing the way information is stored and processed.

Tindalls team is optimistic about the future, developing versatile tools for handling diverse tensor networks.

Choosing different structures for the tensor network corresponds to choosing different forms of compression, like different formats for your image, says Tindall.

We are successfully developing tools for working with a wide range of different tensor networks. This work reflects that, and we are confident that we will soon be raising the bar for quantum computing even further.

In summary, this brilliant work highlights the complexity of achieving quantum superiority and showcases the untapped potential of classical computing.

By reimagining classical algorithms, scientists are challenging the boundaries of computing and opening new pathways for technological advancement, blending the strengths of both classical and quantum approaches in the quest for computational excellence.

As discussed above, quantum computing represents a revolutionary leap in computational capabilities, harnessing the peculiar principles of quantum mechanics to process information in fundamentally new ways.

Unlike traditional computers, which use bits as the smallest unit of data, quantum computers use quantum bits or qubits. These qubits can exist in multiple states simultaneously, thanks to the quantum phenomena of superposition and entanglement.

At the heart of quantum computing lies the qubit. Unlike a classical bit, which can be either 0 or 1, a qubit can be in a state of 0, 1, or both 0 and 1 simultaneously.

This capability allows quantum computers to perform many calculations at once, providing the potential to solve certain types of problems much more efficiently than classical computers.

The power of quantum computing scales exponentially with the number of qubits, making the technology incredibly potent even with a relatively small number of qubits.

Quantum supremacy is a milestone in the field, referring to the point at which a quantum computer can perform a calculation that is practically impossible for a classical computer to execute within a reasonable timeframe.

Achieving quantum supremacy demonstrates the potential of quantum computers to tackle problems beyond the reach of classical computing, such as simulating quantum physical processes, optimizing large systems, and more.

The implications of quantum computing are vast and varied, touching upon numerous fields. In cryptography, quantum computers pose a threat to traditional encryption methods but also offer new quantum-resistant algorithms.

In drug discovery and material science, they can simulate molecular structures with high precision, accelerating the development of new medications and materials.

Furthermore, quantum computing holds the promise of optimizing complex systems, from logistics and supply chains to climate models, potentially leading to breakthroughs in how we address global challenges.

Despite the exciting potential, quantum computing faces significant technical hurdles, including error rates and qubit stability.

Researchers are actively exploring various approaches to quantum computing, such as superconducting qubits, trapped ions, and topological qubits, each with its own set of challenges and advantages.

As the field progresses, the collaboration between academia, industry, and governments continues to grow, driving innovation and overcoming obstacles.

The journey toward practical and widely accessible quantum computing is complex and uncertain, but the potential rewards make it one of the most thrilling areas of modern science and technology.

Quantum computing stands at the frontier of a new era in computing, promising to redefine what is computationally possible.

As researchers work to scale up quantum systems and solve the challenges ahead, the future of quantum computing shines with the possibility of solving some of humanitys most enduring problems.

The full study was published by PRX Quantum.

Like what you read? Subscribe to our newsletter for engaging articles, exclusive content, and the latest updates.

Check us out on EarthSnap, a free app brought to you by Eric Ralls and Earth.com.

Read the original post:
Quantum computer outperformed by new traditional computing type - Earth.com

Tags:

Government of Canada Supports Xanadu to Accelerate Quantum Computing Research and Education – HPCwire

TORONTO, Feb. 23, 2024 Xanadu, a world leader in photonic quantum computing, received a repayable contribution from the Government of Canada, through the Federal Economic Development Agency for Southern Ontario (FedDev Ontario), to help companies advance and commercialize their quantum products.

This funding, through the Regional Quantum Initiative (RQI), will accelerate the development of PennyLane, Xanadus open-source, cloud-based software framework for quantum machine learning, quantum chemistry, and quantum computing.

Southern Ontario is well-positioned for quantum breakthroughs because we are home to world-leading research centers and high-potential quantum companies, like the ones we are celebrating today. Businesses in this sector are creating incredible technologies and our government is providing support so they can bring them to market faster, advancing Canadas role as a world leader in quantum technologies, said the Hon. Filomena Tassi, Minister responsible for the Federal Economic Development Agency for Southern Ontario.

With todays announcement, our government is strengthening Canadas position in quantum technology and helping to boost economic growth and create good jobs for Canadians. Through these investments, we will continue to build this sector and support made-in-Canada technologies that will have a major impact on industries like computing, communications, security and health care, said Bryan May, Parliamentary Secretary to the Minister for Small Business and to the Minister responsible for FedDev Ontario.

Viable applications of quantum computers are contingent upon achieving fault-tolerant quantum computation (FTQC). Great strides have been made in the field, and to continue the development of quantum computing technologies and ensure FTQC is achieved, the future quantum workforce must be well-trained.

Since 2016, Xanadu has been on a mission to make quantum computers useful and available to people everywhere. One key for that mission is accessibility to top-tier quantum education that will help build the future quantum workforce. To support this goal, Xanadu has worked with numerous universities across Canada and the world to create custom educational programs and has established a dedicated quantum community team that runs educational events, creates free educational materials, and engages directly with the community.

As a budget commitment in 2021, the Government of Canada launched its National Quantum Strategy in January 2023, which is underpinned by three pillars: research, talent, and commercialization. FedDev Ontario is one of the regional development agencies focused on supporting high-potential quantum projects and scaling promising Canadian companies.

Through RQI, Xanadu is receiving a repayable investment of $3.75 million to accelerate its core quantum software, PennyLane. This funding will create 22 new quantum jobs, further strengthening Canadas quantum workforce. The objectives of this project include advancing the operating infrastructure to provide a broader cloud offering, as well as increasing community support and creating more user engagement materials.

We are thrilled to receive this FedDev Ontario support to advance our quantum technology, build a larger quantum community, and further strengthen Canadas position as a global quantum leader, said Christian Weedbrook, Xanadu Founder and CEO.

About Xanadu

Xanadu is a quantum computing company with the mission to build quantum computers that are useful and available to people everywhere. Founded in 2016, Xanadu has become one of the worlds leading quantum hardware and software companies. The company also leads the development of PennyLane, an open-source software library for quantum computing and application development.

Source: Xanadu

Visit link:
Government of Canada Supports Xanadu to Accelerate Quantum Computing Research and Education - HPCwire

Tags:

U.S. weighs National Quantum Initiative Reauthorization Act – TechTarget

While artificial intelligence and semiconductors capture global attention, some U.S. policymakers want to ensure Congress doesn't fail to invest and stay competitive in other emerging technologies, including quantum computing.

Quantum computing regularly lands on the U.S. critical and emerging technologies list, which pinpoints technologies that could affect U.S. national security. Quantum computing -- an area of computer science that uses quantum physics to solve problems too complex for traditional computers -- not only affects U.S. national security, but intersects with other prominent technologies and industries, including AI, healthcare and communications.

The U.S. first funded quantum computing research and development in 2018 through the $1.2 billion National Quantum Initiative Act. It's something policymakers now want to continue through the National Quantum Initiative Reauthorization Act. Reps. Frank Lucas (R-Okla.) and Zoe Lofgren (D-Calif.) introduced the legislation in November 2023, and it has yet to pass the House despite having bipartisan support.

Continuing to invest in quantum computing R&D means staying competitive with other countries making similar investments to not only stay ahead of the latest advancements, but protect national security, said Isabel Al-Dhahir, principal analyst at GlobalData.

"Quantum computing's geopolitical weight and the risk a powerful quantum computer poses to current cybersecurity measures mean that not only the U.S., but also China, the EU, the U.K., India, Canada, Japan and Australia are investing heavily in the technology and are focused on building strong internal quantum ecosystems in the name of national security," she said.

Global competition in quantum computing will increase as the technology moves from theoretical to practical applications, Al-Dhahir said. Quantum computing has the potential to revolutionize areas such as drug development and cryptography.

Al-Dhahir said while China is investing $15 billion over the next five years in its quantum computing capabilities, the EU's Quantum Technologies Flagship program will provide $1.2 billion in funding over the next 10 years. To stay competitive, the U.S. needs to continue funding quantum computing R&D and studying practical applications for the technology.

"If reauthorization fails, it will damage the U.S.'s position in the global quantum race," she said.

Lofgren, who spoke during The Intersect: A Tech and Policy Summit earlier this month, said it's important to pass the National Quantum Initiative Reauthorization Act to "maintain our competitive edge." The legislation aims to move beyond scientific research and into practical applications of quantum computing, along with ensuring scientists have the necessary resources to accomplish those goals, she said.

Indeed, Sen. Marsha Blackburn (R-Tenn.) said during the summit that the National Quantum Initiative Act needs to be reauthorized for the U.S. to move forward. Blackburn, along with Sen. Ben Ray Lujn (D-N.M.), has also introduced the Quantum Sandbox for Near-Term Applications Act to advance commercialization of quantum computing.

The 2018 National Quantum Initiative Act served a "monumental" purpose in mandating agencies such as the National Science Foundation, NIST and the Department of Energy to study quantum computing and create a national strategy, said Joseph Keller, a visiting fellow at the Brookings Institution.

Though the private sector has made significant investments in quantum computing, Keller said the U.S. would not be a leader in quantum computing research without federal support, especially with goals to eventually commercialize the technology at scale. He said that's why it's pivotal for the U.S. to pass the National Quantum Initiative Reauthorization Act, even amid other congressional priorities such as AI.

"I don't think you see any progress forward without the passage of that legislation," Keller said.

Despite investment from numerous big tech companies, including Microsoft, Intel, IBM and Google, significant technical hurdles remain for the broad commercialization of quantum computing, Al-Dhahir said.

She said the quantum computing market faces issues such as overcoming high error rates -- for example, suppressing error rates requires "substantially higher" qubit counts than what is being achieved today. A qubit, short for quantum bit, is considered a basic unit of information in quantum computing.

IBM released the first quantum computer with more than 1,000 qubits in 2023. However, Al-Dhahir said more is needed to avoid high error rates in quantum computing.

"The consensus is that hundreds of thousands to millions of qubits are required for practical large-scale quantum computers," she said.

Indeed, industry is still trying to identify the economic proposition of quantum computing, and the government has a role to play in that, Brookings' Keller said.

"It doesn't really have these real-world applications, things you can hold and touch," he said. "But there are breakthroughs happening in science and industry."

Lofgren said she recognizes that quantum computing has yet to reach the stage of practical, commercial applications, but she hopes that legislation such as the National Quantum Initiative Reauthorization Act will help the U.S. advance quantum computing to that stage.

"Quantum computing is not quite there yet, although we are making tremendous strides," she said.

Makenzie Holland is a news writer covering big tech and federal regulation. Prior to joining TechTarget Editorial, she was a general reporter for the Wilmington StarNews and a crime and education reporter at the Wabash Plain Dealer.

Link:
U.S. weighs National Quantum Initiative Reauthorization Act - TechTarget

Tags: