Archive for the ‘Quantum Computing’ Category

INSIDE QUANTUM TECHNOLOGY New York, The Largest Business Quantum Technology Conference and Exhibition, Announces Focus on Quantum Safe Initiatives and…

NEW YORK, Oct. 19, 2021 /PRNewswire/ --3DR Holdings today announced a deep dive into Quantum Safe initiatives and use cases as a prime focus of Inside Quantum Technology, the industry's leading conference and exhibition. Sponsored by IBM, Inside Quantum Technology will run from November 1-5 as a hybrid virtual and in-person event with live sessions in New York City. The conference is dedicated to the business of quantum computing and will feature presentations and discussions critical to those seeking new business revenues from quantum-related opportunities.

Continued developments in quantum computing represent a serious threat to existing encryption systems that protect critical networks and applications. It's against this backdrop that Inside Quantum Technology will focus on technologies being developed to protect these systems, along with an examination of real-world end use cases.

In addition to its world-class conference program, Inside Quantum Technology will provide attendees with opportunities to visit leading vendors in its exhibit hall, both in-person and virtually, where visitors can download materials, watch videos, and connect with company representatives. The event also offers networking opportunities on each day, enabling participants to gather and engage based on specific quantum-related topics.

For additional details about Inside Quantum Technology, including the complete agenda, registration information, sponsorship and exhibition options, please visit https://iqtevent.com/fall/.

About 3DR Holdings3DR Holdings is a technology media organization with website, research and international trade show interests in the fields of Quantum Technology and 3D Printing. For more information, please visit https://3drholdings.com.

About Inside Quantum TechnologyInside Quantum Technology is the only organization worldwide dedicated to meeting the strategic information and analysis needs of the emerging quantum technology sector via events, daily news, research and podcasts. For additional information, please visit https://www.insidequantumtechnology.com.

Media Contact: Barry Schwartz, Schwartz Public Relations[emailprotected], 212-677-8700 ext. 118

SOURCE Inside Quantum Technology

Continue reading here:
INSIDE QUANTUM TECHNOLOGY New York, The Largest Business Quantum Technology Conference and Exhibition, Announces Focus on Quantum Safe Initiatives and...

Incredible Growth of Quantum Computing in Health Care Market by 2028 | D-Wave Solutions, IBM, Google EcoChunk – EcoChunk

Quantum Computing in Health Care Market report focused on the comprehensive analysis of current and future prospects of the Quantum Computing in Health Care industry. It describes the optimal or favourable fit for the vendors to adopt successive merger and acquisition strategies, geography expansion, research & development, and new product introduction strategies to execute further business expansion and growth during a forecast period.

An in-depth analysis of past trends, future trends, demographics, technological advancements, and regulatory requirements for the Quantum Computing in Health Care market has been done in order to calculate the growth rates for each segment and sub-segments.

Get Sample Copy (Including FULL TOC, Graphs and Tables) of this report: https://www.a2zmarketresearch.com/sample-request/577135

Note In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Top Key Vendors of this Market are:

D-Wave Solutions, IBM, Google, Microsoft, Rigetti Computing, Intel, Anyon Systems Inc., Cambridge Quantum Computing Limited, Origin Quantum Computing Technology.

Global Quantum Computing in Health Care Market Segmentation:

Product Type Segmentation:

Diagnostic AssistancePrecision MedicineOthers

Industry Segmentation:

HospitalResearch InstituteOther

Various factors are responsible for the markets growth trajectory, which are studied at length in the report. In addition, the report lists down the restraints that are posing threat to the global Quantum Computing in Health Care market. This report is a consolidation of primary and secondary research, which provides market size, share, dynamics, and forecast for various segments and sub-segments considering the macro and micro environmental factors. It also gauges the bargaining power of suppliers and buyers, threat from new entrants and product substitute, and the degree of competition prevailing in the market.

The influence of the latest government guidelines is also analysed in detail in the report. It studies the Quantum Computing in Health Care markets trajectory between forecast periods. The cost analysis of the Global Quantum Computing in Health Care Market has been performed while keeping in view manufacturing expenses, labour cost, and raw materials and their market concentration rate, suppliers, and price trend.

Get Special Pricing on this Premium Report:

https://www.a2zmarketresearch.com/discount/577135

The report provides insights on the following pointers:

Market Penetration: Comprehensive information on the product portfolios of the top players in the Quantum Computing in Health Care market.

Competitive Assessment: In-depth assessment of the market strategies, geographic and business segments of the leading players in the market.

Product Development/Innovation: Detailed insights on the upcoming technologies, R&D activities, and product launches in the market.

Market Development: Comprehensive information about emerging markets. This report analyzes the market for various segments across geographies.

Market Diversification: Exhaustive information about new products, untapped geographies, recent developments, and investments in the Quantum Computing in Health Care market.

Regions Covered in the Global Quantum Computing in Health Care Market Report 2021: The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Reasons for buying this report:

Table of Contents

Global Quantum Computing in Health Care Market Research Report 2021 2027

Chapter 1 Quantum Computing in Health Care Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Quantum Computing in Health Care Market Forecast

Buy Exclusive Report: https://www.a2zmarketresearch.com/checkout

If you have any special requirements, please let us know and we will offer you the report as you want.

About A2Z Market Research:

The A2Z Market Research library provides syndication reports from market researchers around the world. Ready-to-buy syndication Market research studies will help you find the most relevant business intelligence.

Our Research Analyst Provides business insights and market research reports for large and small businesses.

The company helps clients build business policies and grow in that market area. A2Z Market Research is not only interested in industry reports dealing with telecommunications, healthcare, pharmaceuticals, financial services, energy, technology, real estate, logistics, F & B, media, etc. but also your company data, country profiles, trends, information and analysis on the sector of your interest.

Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

sales@a2zmarketresearch.com

+1 775 237 4147

Related Reports:

Voice To Text On Mobile Devices Market Cumulative Impact for COVID-19 Recovery Research Report 2021 | Nuance Communications, Microsoft Inc., Agnitio SL, Biotrust, VoiceVault

Read more from the original source:
Incredible Growth of Quantum Computing in Health Care Market by 2028 | D-Wave Solutions, IBM, Google EcoChunk - EcoChunk

Q-CTRL named to Most Innovative Companies List by The Australian Financial Review and BOSS Magazine – EurekAlert

SYDNEY, Oct. 15, 2021 Q-CTRL, a startup that applies the principles of control engineering to accelerate the development of quantum technology, today announced it was named to The Australian Financial Review (AFR) BOSSMost Innovative Companies list for its efforts to improve quantum computer stability and deliver useful performance to end users with its AI-based quantum firmware solutions.

The AFR BOSSMost Innovative Companies Listrecognizes the top innovative and disruptive companies in Australia and New Zealand through industry-specific lists. The prestigious annual list, published by AFR and Boss Magazine, is based on a rigorous assessment process managed by Australias leading innovation consultancy, Inventium, in conjunction with a panel of industry expert judges. Q-CTRL ranked third in the technology category, from over 700 nominated organisations across Australia and New Zealand.

Quantum computers offer revolutionary capabilities for applications ranging from drug discovery and enterprise logistics to finance. The underlying hardware, however, is extremely unstable and fragile, preventing these machines from reaching their full potential. Q-CTRL was honored for developing - and experimentally validating on real quantum computers - an AI-based solution to this challenge, bringing useful quantum computers closer to fruition.

Our mission is to turn quantum computers into systems that deliver real and transformative economic value to end users, said Q-CTRL Founder and CEO Professor Michael J. Biercuk. And now we have in hand a globally unique capability that can deliver on this potential.

Q-CTRLs innovative AI-driven product for quantum hardware acceleration, called Boulder Opal, is now in use in national laboratories, research universities, and quantum computing companies around the world. The company is also offering customized solutions to enterprise users seeking competitive advantages from quantum computing.

When we power up our computers today, we know they're going to work. Few of us understand exactly how the hardware functions - it just delivers the performance we want without our conscious intervention, Biercuk added.That's the ultimate goal for the quantum computing user experience as well, and we have made a major step towards realizing it with our technology.

Being named to the Australian Financial Reviews BOSS Most Innovative Companies list really shows that our efforts to make quantum computing a reality are resonating in both the research and broader enterprise markets. Were excited to expand our commercial partnerships and help quantum computing end-users take advantage of the extraordinary capabilities weve developed.

Inventium is proud to announce the 2021 Most Innovative Companies list in conjunction with AFR, said Dr Amantha Imber, founder, Inventium. After the enormous impact 18 months (and counting) of a global pandemic has had on the way we live, it's so inspiring to see all the amazing innovations our winners have created to help make our lives better."

In assessing candidates for the award, the judges looked at how valuable the problem is that the innovation is solving, the quality and uniqueness of the solution, and the level of impact that the innovation has had.

To learn more about Q-CTRL and its award-winning tools to accelerate the path to useful quantum computing, visit q-ctrl.com.

About Q-CTRL

Q-CTRL builds quantum control solutions for quantum technology end-users and R&D professionals across all applications. Its focus on developing the most advanced tools and techniques in quantum control provides a unique capability underpinning both quantum computing and quantum sensing. Q-CTRL recently announced a partnership with Transport for NSW delivering advanced infrastructure software to transport data scientists exploring quantum computing.

Q-CTRL has assembled the worlds foremost team of expert quantum-control engineers, providing solutions to many of the most advanced quantum computing and sensing teams globally. Q-CTRL is funded by SquarePeg Capital, Sierra Ventures, Sequoia Capital China, Data Collective, Horizons Ventures, Main Sequence Ventures and In-Q-Tel. Q-CTRL has international headquarters in Sydney, Los Angeles, and Berlin.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

See more here:
Q-CTRL named to Most Innovative Companies List by The Australian Financial Review and BOSS Magazine - EurekAlert

Berlin Invests in becoming a Hotspot for the R&D of Quantum Technologies – KKTV 11 News

"Berlin Quantum Alliance" is launched!

Published: Oct. 18, 2021 at 4:15 AM MDT

NEW YORK, Oct. 18, 2021 /PRNewswire/ --Berlin recently launched "Berlin Quantum Alliance" (BQA) to strengthen the research and development of quantum technologies in Germany's capital. The initiative pools the expertise of universities and research institutes and develops cooperations with Berlin's business community. Its goal is to sustainably expand existing expertise in quantum technology with the help of state funding in the amount of 25 million euros.

Michael Mller, Berlin's Governing Mayor and Senator for Science and Research highlighted its importance commenting, "Berlin is now a leading research metropolis and the right place for key technologies. With our excellent universities, research institutes and innovative companies, we have the best prerequisites for Berlin to develop into a true hotspot for quantum technologies. To this end, we have consistently invested in our city's innovation potential in recent years and are continuing to expand this support. Because every euro invested in science and research is good for all of Berlin and the best insurance for the future of our city."

BQA is based on a concept developed by researchers from prestigious institutions like the Free University of Berlin, Humboldt University of Berlin, Technical University of Berlin, Fraunhofer Institute for Open Communication Systems (FOKUS) and the Fraunhofer Institute for Telecommunications (HHI). The Berlin-Brandenburg region has a strong expertise in photonics, a key technology for quantum technology (QT) applications and in the fields of quantum communication and sensor technology.

Ramona Pop, Senator for Economics, Energy and Public Enterprises also commented, "Like no other city, Berlin relies on future technology. By bundling the competencies of quantum technology in the Berlin Quantum Alliance, we are strengthening our science and business location. The development of quantum technologies is a constantly advancing field of research worldwide. It is therefore important for Berlin to play a part in this megatrend and create the foundation for new, future-proof jobs."

Experts expect the quantum computing market is projected to reach $64.98 billion by 2030 from just $507.1 million in 2019. Big tech companies have been investing heavily in this space, e.g., Microsoft, Google and Amazon (BI 2021).

The Berlin Business Office, USA is ready to help companies from the U.S. that are interested in this initiative and want to channel their ideas, needs and expertise into Berlin`s Quantum Alliance.

Contact: Kristina Garcia, kgarcia@berlinoffice-usa.com

View original content to download multimedia:

SOURCE Berlin Business Office

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Follow this link:
Berlin Invests in becoming a Hotspot for the R&D of Quantum Technologies - KKTV 11 News

Quantum computing – Wikipedia

Study of a model of computation

Quantum computing is a type of computation that harnesses the collective properties of quantum states, such as superposition, interference, and entanglement, to perform calculations. The devices that perform quantum computations are known as quantum computers.[1]:I-5 They are believed to be able to solve certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. Expansion is expected in the next few years[when?] as the field shifts toward real-world use in pharmaceutical, data security and other applications.[2]

Quantum computing began in 1980 when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine.[3]Richard FeynmanandYuri Maninlater suggested that a quantum computer had the potential to simulate things a classical computer could not feasibly do.[4][5] In 1994, Peter Shor developed a quantum algorithm for factoring integers with the potential to decrypt RSA-encrypted communications.[6] Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream."[7] In recent years, investment in quantum computing research has increased in the public and private sectors.[8][9] On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that was infeasible on any classical computer,[10][11] but whether this claim was or is still valid is a topic of active research.[12][13]

There are several types of quantum computers (also known as quantum computing systems), including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit, based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is measured, however, it is always 0 or 1; the probability of either outcome depends on the qubit's quantum state immediately prior to measurement.

Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits.[1]:213 These qubits may be designed differently, depending on the full quantum computer's computing model, whether quantum logic gates, quantum annealing, or adiabatic quantum computation. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence and state fidelity. Quantum computers therefore require error correction.[14][15]

Any computational problem that can be solved by a classical computer can also be solved by a quantum computer.[16] Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the ChurchTuring thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of timea feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.

The prevailing model of quantum computation describes the computation in terms of a network of quantum logic gates.[17] This model can be thought of as an abstract linear-algebraic generalization of a classical circuit. Since this circuit model obeys quantum mechanics, a quantum computer capable of efficiently running these circuits is believed to be physically realizable.

A memory consisting of n {textstyle n} bits of information has 2 n {textstyle 2^{n}} possible states. A vector representing all memory states thus has 2 n {textstyle 2^{n}} entries (one for each state). This vector is viewed as a probability vector and represents the fact that the memory is to be found in a particular state.

In the classical view, one entry would have a value of 1 (i.e. a 100% probability of being in this state) and all other entries would be zero. In quantum mechanics, probability vectors can be generalized to density operators. The quantum state vector formalism is usually introduced first because it is conceptually simpler, and because it can be used instead of the density matrix formalism for pure states, where the whole quantum system is known.

We begin by considering a simple memory consisting of only one bit. This memory may be found in one of two states: the zero state or the one state. We may represent the state of this memory using Dirac notation so that

The state of this one-qubit quantum memory can be manipulated by applying quantum logic gates, analogous to how classical memory can be manipulated with classical logic gates. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a matrix

The mathematics of single qubit gates can be extended to operate on multi-qubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit whilst leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are

In summary, a quantum computation can be described as a network of quantum logic gates and measurements. However, any measurement can be deferred to the end of quantum computation, though this deferment may come at a computational cost, so most quantum circuits depict a network consisting only of quantum logic gates and no measurements.

Any quantum computation (which is, in the above formalism, any unitary matrix over n {displaystyle n} qubits) can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a universal gate set, since a computer that can run such circuits is a universal quantum computer. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the Solovay-Kitaev theorem.

Progress in finding quantum algorithms typically focuses on this quantum circuit model, though exceptions like the quantum adiabatic algorithm exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.[18]

Quantum algorithms that offer more than a polynomial speedup over the best known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing discrete logarithms, solving Pell's equation, and more generally solving the hidden subgroup problem for abelian finite groups.[18] These algorithms depend on the primitive of the quantum Fourier transform. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely.[19] Certain oracle problems like Simon's problem and the BernsteinVazirani problem do give provable speedups, though this is in the quantum query model, which is a restricted model where lower bounds are much easier to prove and doesn't necessarily translate to speedups for practical problems.

Other problems, including the simulation of quantum physical processes from chemistry and solid-state physics, the approximation of certain Jones polynomials, and the quantum algorithm for linear systems of equations have quantum algorithms appearing to give super-polynomial speedups and are BQP-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that no quantum algorithm gives a super-polynomial speedup, which is believed to be unlikely.[20]

Some quantum algorithms, like Grover's algorithm and amplitude amplification, give polynomial speedups over corresponding classical algorithms.[18] Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems.[21] Many examples of provable quantum speedups for query problems are related to Grover's algorithm, including Brassard, Hyer, and Tapp's algorithm for finding collisions in two-to-one functions,[22] which uses Grover's algorithm, and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees,[23] which is a variant of the search problem.

A notable application of quantum computation is for attacks on cryptographic systems that are currently in use. Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300-digit primes).[24] By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular, the RSA, DiffieHellman, and elliptic curve DiffieHellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.

Identifying cryptographic systems that may be secure against quantum algorithms is an actively researched topic under the field of post-quantum cryptography.[25][26] Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the McEliece cryptosystem based on a problem in coding theory.[25][27] Lattice-based cryptosystems are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the dihedral hidden subgroup problem, which would break many lattice based cryptosystems, is a well-studied open problem.[28] It has been proven that applying Grover's algorithm to break a symmetric (secret key) algorithm by brute force requires time equal to roughly 2n/2 invocations of the underlying cryptographic algorithm, compared with roughly 2n in the classical case,[29] meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128 has against classical brute-force search (see Key size).

Quantum cryptography could potentially fulfill some of the functions of public key cryptography. Quantum-based cryptographic systems could, therefore, be more secure than traditional systems against quantum hacking.[30]

The most well-known example of a problem admitting a polynomial quantum speedup is unstructured search, finding a marked item out of a list of n {displaystyle n} items in a database. This can be solved by Grover's algorithm using O ( n ) {displaystyle O({sqrt {n}})} queries to the database, quadratically fewer than the ( n ) {displaystyle Omega (n)} queries required for classical algorithms. In this case, the advantage is not only provable but also optimal: it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups.

Problems that can be addressed with Grover's algorithm have the following properties:[citation needed]

For problems with all these properties, the running time of Grover's algorithm on a quantum computer scales as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can be applied[31] is Boolean satisfiability problem, where the database through which the algorithm iterates is that of all possible answers. An example and (possible) application of this is a password cracker that attempts to guess a password. Symmetric ciphers such as Triple DES and AES are particularly vulnerable to this kind of attack.[citation needed] This application of quantum computing is a major interest of government agencies.[32]

Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe quantum simulation will be one of the most important applications of quantum computing.[33] Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a collider.[34]Quantum simulations might be used to predict future paths of particles and protons under superposition in the double-slit experiment.[citation needed]About 2% of the annual global energy output is used for nitrogen fixation to produce ammonia for the Haber process in the agricultural fertilizer industry while naturally occurring organisms also produce ammonia. Quantum simulations might be used to understand this process increasing production.[35]

Quantum annealing or Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.

Since quantum computers can produce outputs that classical computers cannot produce efficiently, and since quantum computation is fundamentally linear algebraic, some express hope in developing quantum algorithms that can speed up machine learning tasks.[36][37]For example, the quantum algorithm for linear systems of equations, or "HHL Algorithm", named after its discoverers Harrow, Hassidim, and Lloyd, is believed to provide speedup over classical counterparts.[38][37] Some research groups have recently explored the use of quantum annealing hardware for training Boltzmann machines and deep neural networks.[39][40]

In the field of computational biology, computing has played a big role in solving many biological problems. One of the well-known examples would be in computational genomics and how computing has drastically reduced the time to sequence a human genome. Given how computational biology is using generic data modeling and storage, its applications to computational biology are expected to arise as well.[41]

Deep generative chemistry models emerge as powerful tools to expedite drug discovery. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome in the future by quantum computers. Quantum computers are naturally good for solving complex quantum many-body problems [42] and thus may be instrumental in applications involving quantum chemistry. Therefore, one can expect that quantum-enhanced generative models[43] including quantum GANs[44] may eventually be developed into ultimate generative chemistry algorithms. Hybrid architectures combining quantum computers with deep classical networks, such as Quantum Variational Autoencoders, can already be trained on commercially available annealers and used to generate novel drug-like molecular structures.[45]

John Preskill has introduced the term quantum supremacy to refer to the hypothetical speedup advantage that a quantum computer would have over a classical computer in a certain field.[46] Google announced in 2017 that it expected to achieve quantum supremacy by the end of the year though that did not happen. IBM said in 2018 that the best classical computers will be beaten on some practical task within about five years and views the quantum supremacy test only as a potential future benchmark.[47] Although skeptics like Gil Kalai doubt that quantum supremacy will ever be achieved,[48][49] in October 2019, a Sycamore processor created in conjunction with Google AI Quantum was reported to have achieved quantum supremacy,[50] with calculations more than 3,000,000 times as fast as those of Summit, generally considered the world's fastest computer.[51] In December 2020, a group at USTC implemented a type of Boson sampling on 76 photons with a photonic quantum computer Jiuzhang to demonstrate quantum supremacy.[52][53][54] The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds.[55] Bill Unruh doubted the practicality of quantum computers in a paper published back in 1994.[56] Paul Davies argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the holographic principle.[57]

There are a number of technical challenges in building a large-scale quantum computer.[58] Physicist David DiVincenzo has listed these requirements for a practical quantum computer:[59]

Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by Google and IBM, need Helium-3, a nuclear research byproduct, and special superconducting cables made only by the Japanese company Coax Co.[60]

The control of multi-qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This has led to the development of quantum controllers which enable interfacing with the qubits. Scaling these systems to support a growing number of qubits is an additional challenge.[citation needed]

One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T2 (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature.[61] Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.[62] A 2020 study argues that ionizing radiation such as cosmic rays can nevertheless cause certain systems to decohere within milliseconds.[63]

As a result, time-consuming tasks may render some quantum algorithms inoperable, as maintaining the state of qubits for a long enough duration will eventually corrupt the superpositions.[64]

These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.

As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 103, assuming the noise is depolarizing.

Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L2, where L is the number of digits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000-bit number, this implies a need for about 104 bits without error correction.[65] With error correction, the figure would rise to about 107 bits. Computation time is about L2 or about 107 steps and at 1MHz, about 10 seconds.

A very different approach to the stability-decoherence problem is to create a topological quantum computer with anyons, quasi-particles used as threads and relying on braid theory to form stable logic gates.[66][67]

Physicist Mikhail Dyakonov has expressed skepticism of quantum computing as follows:

There are a number of quantum computing models, distinguished by the basic elements in which the computation is decomposed. The four main models of practical importance are:

The quantum Turing machine is theoretically important but the physical implementation of this model is not feasible. All four models of computation have been shown to be equivalent; each can simulate the other with no more than polynomial overhead.

For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):

The large number of candidates demonstrates that quantum computing, despite rapid progress, is still in its infancy.[citation needed]

Any computational problem solvable by a classical computer is also solvable by a quantum computer.[16] Intuitively, this is because it is believed that all physical phenomena, including the operation of classical computers, can be described using quantum mechanics, which underlies the operation of quantum computers.

Conversely, any problem solvable by a quantum computer is also solvable by a classical computer; or more formally, any quantum computer can be simulated by a Turing machine. In other words, quantum computers provide no additional power over classical computers in terms of computability. This means that quantum computers cannot solve undecidable problems like the halting problem and the existence of quantum computers does not disprove the ChurchTuring thesis.[95]

As of yet, quantum computers do not satisfy the strong Church thesis. While hypothetical machines have been realized, a universal quantum computer has yet to be physically constructed. The strong version of Church's thesis requires a physical computer, and therefore there is no quantum computer that yet satisfies the strong Church thesis.

While quantum computers cannot solve any problems that classical computers cannot already solve, it is suspected that they can solve certain problems faster than classical computers. For instance, it is known that quantum computers can efficiently factor integers, while this is not believed to be the case for classical computers.

The class of problems that can be efficiently solved by a quantum computer with bounded error is called BQP, for "bounded error, quantum, polynomial time". More formally, BQP is the class of problems that can be solved by a polynomial-time quantum Turing machine with an error probability of at most 1/3. As a class of probabilistic problems, BQP is the quantum counterpart to BPP ("bounded error, probabilistic, polynomial time"), the class of problems that can be solved by polynomial-time probabilistic Turing machines with bounded error.[96] It is known that BPP {displaystyle subseteq } BQP and is widely suspected that BQP {displaystyle subsetneq } BPP, which intuitively would mean that quantum computers are more powerful than classical computers in terms of time complexity.[97]

The exact relationship of BQP to P, NP, and PSPACE is not known. However, it is known that P {displaystyle subseteq } BQP {displaystyle subseteq } PSPACE; that is, all problems that can be efficiently solved by a deterministic classical computer can also be efficiently solved by a quantum computer, and all problems that can be efficiently solved by a quantum computer can also be solved by a deterministic classical computer with polynomial space resources. It is further suspected that BQP is a strict superset of P, meaning there are problems that are efficiently solvable by quantum computers that are not efficiently solvable by deterministic classical computers. For instance, integer factorization and the discrete logarithm problem are known to be in BQP and are suspected to be outside of P. On the relationship of BQP to NP, little is known beyond the fact that some NP problems that are believed not to be in P are also in BQP (integer factorization and the discrete logarithm problem are both in NP, for example). It is suspected that NP {displaystyle nsubseteq } BQP; that is, it is believed that there are efficiently checkable problems that are not efficiently solvable by a quantum computer. As a direct consequence of this belief, it is also suspected that BQP is disjoint from the class of NP-complete problems (if an NP-complete problem were in BQP, then it would follow from NP-hardness that all problems in NP are in BQP).[98]

The relationship of BQP to the basic classical complexity classes can be summarized as follows:

It is also known that BQP is contained in the complexity class #P (or more precisely in the associated class of decision problems P#P),[98] which is a subclass of PSPACE.

It has been speculated that further advances in physics could lead to even faster computers. For instance, it has been shown that a non-local hidden variable quantum computer based on Bohmian Mechanics could implement a search of an N {displaystyle N} -item database in at most O ( N 3 ) {displaystyle O({sqrt[{3}]{N}})} steps, a slight speedup over Grover's algorithm, which runs in O ( N ) {displaystyle O({sqrt {N}})} steps. Note, however, that neither search method would allow quantum computers to solve NP-complete problems in polynomial time.[99] Theories of quantum gravity, such as M-theory and loop quantum gravity, may allow even faster computers to be built. However, defining computation in these theories is an open problem due to the problem of time; that is, within these physical theories there is currently no obvious way to describe what it means for an observer to submit input to a computer at one point in time and then receive output at a later point in time.[100][101]

Read more here:
Quantum computing - Wikipedia