Archive for the ‘Quantum Computing’ Category

Quantum Computing Market Outlook, Opportunities and Forecasts Report 2020-2026 – The Think Curiouser

The globalQuantum Computing marketwas valued at US$ 81.6 Mn in 2018 and is expected to reach US$ 381.6 Mn in 2026, growing at a CAGR of 21.26% during the forecast period. With COVID-19 pandemic, many industries are transforming rapidly. The Global Quantum Computing Market is one of the major industries undergoing changes. This year many industries have vanished entirely from the market and many industries have risen.

Moreover, the government-backed schemes throughout the globe are offering many advantages to businesses. As the governing bodies are supporting the industries, it is a strong pillar to support the market growth of Quantum Computing in the upcoming decade (2020-2026). Organizations planning to move into new market segments can take the help of market indicators to draw a business plan. With the technological boom, new markets are blossoming across the globe, making it a breeding ground for new businesses.

Request for Sample with Complete TOC and Figures & Graphs @ https://www.alltheresearch.com/sample-request/150

Global Quantum Computing Market 2020: Covering both the industrial and the commercial aspects of the Global Quantum Computing Market, the report encircles several crucial chapters that give the report an extra edge. The Global Quantum Computing Market report deep dives into several parts of the report that plays a crucial role in getting the holistic view of the report. The list of such crucial aspects of the report includes company profile, industry analysis, competitive dashboard, comparative analysis of the key players, regional analysis with further analysis country wise.

Global Quantum Computing Market Analysis by Key Players:

Any questions, Lets discuss with the analyst @ https://www.alltheresearch.com/speak-to-analyst/150

Moreover, one of the uniqueness in the report is that it also covers the country-level analysis of the regulatory scenario, technology penetration, predictive trends, and prescriptive trends. This not only gives the readers of the report the actual real-time insights but also gives country-wise analysis, that plays a vital role in decision making. The inclusion of the report is not limited to the above mention key pointers. The report also emphasizes on the market opportunities, porters five forces, and analysis of the different types of products and application of the Global Quantum Computing Market.

The report splits by major applications:

Then report analyzed by types:

Global Quantum Computing Market Report is a professional and in-depth research report on the worlds major regional market conditions of the Quantum Computing industry, focusing on the main regions and the main countries as Follows:

COVID-19 Impact on Quantum Computing Market:

The outbreak of COVID-19 has brought along a global recession, which has impacted several industries. Along with this impact COVID Pandemic has also generated few new business opportunities for Quantum Computing Market. Overall competitive landscape and market dynamics of Quantum Computing has been disrupted due to this pandemic. All these disruptions and impacts has been analysed quantifiably in this report, which is backed by market trends, events and revenue shift analysis. COVID impact analysis also covers strategic adjustments for Tier 1, 2 and 3 players of Quantum Computing Market.

Get Brief Information on Pre COVID-19 Analysis and Post COVID-19 Opportunities in Quantum Computing Market @ https://www.alltheresearch.com/impactC19-request/150

Table of Contents Includes Major Pointes as follows:

Browse Full Research report along with TOC, Tables & Figures: https://www.alltheresearch.com/report/150/Quantum Computing

About AllTheResearch:

AllTheResearch was formed with the aim of making market research a significant tool for managing breakthroughs in the industry. As a leading market research provider, the firm empowers its global clients with business-critical research solutions. The outcome of our study of numerous companies that rely on market research and consulting data for their decision-making made us realise, that its not just sheer data-points, but the right analysis that creates a difference. While some clients were unhappy with the inconsistencies and inaccuracies of data, others expressed concerns over the experience in dealing with the research-firm. Also, same-data-for-all-business roles was making research redundant. We identified these gaps and built AllTheResearch to raise the standards of research support.

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan S.

Email: [emailprotected]

Phone: +1 (407) 768-2028

Here is the original post:
Quantum Computing Market Outlook, Opportunities and Forecasts Report 2020-2026 - The Think Curiouser

Quantum Computing Technologies Market likely to touch new heights by end of for – News by aeresearch

The Quantum Computing Technologies market business intelligence report complies the key trends across the competitive and geographical landscape that are slated to influence the growth trajectory of the industry in the upcoming years. In addition, it addresses the issues plaguing the industry and provides insights into the possibilities that will enable business expansion in both existing and untapped markets. Moreover, it takes into account the changing industry dynamics since the onset of Covid-19 pandemic to help stakeholders make well-informed decisions.

Key highlights from COVID-19 impact analysis:

A gist of the regional landscape:

Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/347412

Other highlights from the Quantum Computing Technologies market report:

Reasons to access this Report:

The key questions answered in this report:

Significant Point Mentioned in theResearch report:

Table of Contents for market shares by application, research objectives, market sections by type and forecast years considered:

Quantum Computing Technologies Market Share by Key Players: Here, capital, revenue, and price analysis by the business are included along with other sections such as development plans, areas served, products offered by key players, alliance and acquisition and headquarters distribution.

Global Growth Trends: Industry trends, the growth rate of major producers, and production analysis are the segments included in this chapter.

Market Size by Application: This segment includes Quantum Computing Technologies market consumption analysis by application.

Quantum Computing Technologies market Size by Type: It includes analysis of value, product utility, market percentage, and production market share by type.

Profiles of Manufacturers: Here, commanding players of the global Quantum Computing Technologies market are studied based on sales area, key products, gross margin, revenue, price, and production.

Quantum Computing Technologies Market Value Chain and Sales Channel Analysis: It includes customer, distributor, market value chain, and sales channel analysis.

Market Forecast: This section is focused on production and production value forecast, key producers forecast by type, application, and regions

Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/347412

Continue reading here:
Quantum Computing Technologies Market likely to touch new heights by end of for - News by aeresearch

Quantum Computing Market by Application Analysis, Regional Outlook, Competitive Strategies And Forecast by 2026 – PRnews Leader

Global Quantum Computing Market report provides qualitative and quantitative information covering market size breakdown, revenue, and growth rate by important segments. The Quantum Computing market report provides a competitive landscape of major players with the current industry scenario, market concentration status. The report study explores the information on production, consumption, export, and import of Quantum Computing market in each region.

The global Quantum Computing market was valued at US$ 81.6 Mn in 2018 and is expected to reach US$ 381.6 Mn in 2026, growing at a CAGR of 21.26% during the forecast period.

Request for Sample with Complete TOC and Figures & Graphs @ https://www.alltheresearch.com/sample-request/150

Global Quantum Computing Market Report is a professional and in-depth research report on the worlds major regional market conditions of the Quantum Computing industry, focusing on the main regions and the main countries (United States, Europe, Japan and China).

Global Quantum Computing market competition by top manufacturers, with production, price, revenue (value) and market share for each manufacturer.

Global Quantum Computing Market Analysis by Key Players:

Any questions, Lets discuss with the analyst @ https://www.alltheresearch.com/speak-to-analyst/150

Based on product type, the report split into

Based on the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share and growth rate for each application, including

COVID-19 Impact on Quantum Computing Market:

The outbreak of COVID-19 has brought along a global recession, which has impacted several industries. Along with this impact COVID Pandemic has also generated few new business opportunities for Quantum Computing Market. Overall competitive landscape and market dynamics of Quantum Computing has been disrupted due to this pandemic. All these disruptions and impacts has been analysed quantifiably in this report, which is backed by market trends, events and revenue shift analysis. COVID impact analysis also covers strategic adjustments for Tier 1, 2 and 3 players of Quantum Computing Market.

Get Brief Information on Pre COVID-19 Analysis and Post COVID-19 Opportunities in Quantum Computing Market @ https://www.alltheresearch.com/impactC19-request/150

Table of Contents Includes Major Pointes as follows:

Browse Full Research report along with TOC, Tables & Figures: https://www.alltheresearch.com/report/150/Quantum Computing

About AllTheResearch:

AllTheResearch was formed with the aim of making market research a significant tool for managing breakthroughs in the industry. As a leading market research provider, the firm empowers its global clients with business-critical research solutions. The outcome of our study of numerous companies that rely on market research and consulting data for their decision-making made us realise, that its not just sheer data-points, but the right analysis that creates a difference. While some clients were unhappy with the inconsistencies and inaccuracies of data, others expressed concerns over the experience in dealing with the research-firm. Also, same-data-for-all-business roles was making research redundant. We identified these gaps and built AllTheResearch to raise the standards of research support.

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan S.

Email: [emailprotected]

Phone: +1 (407) 768-2028

Excerpt from:
Quantum Computing Market by Application Analysis, Regional Outlook, Competitive Strategies And Forecast by 2026 - PRnews Leader

Quantum Computing Is Bigger Than Donald Trump – WIRED

Just this week the Senate had a hearing, ostensibly about speech on internet platforms. But what the hearing was really about was our continuing inability to figure out what to do with a technological infrastructure that gives every single person on the planet the ability to broadcast their thoughts, whether illuminating or poisonous. We know that solutions are elusive, especially in the context of our current electoral issues. But this is actually one of the less vexing conundrums that technology has dropped on our lap. What are we going to do about Crispr? How are we going to handle artificial intelligence, before it handles us? A not-encouraging sign of our ability to deal with change: While we werent looking, smart phones have made us cyborgs.

Heres another example of a change that might later look more significant than our current focus: Late last year, Google announced it had achieved Quantum Supremacy, This means that it solved a problem with its experimental quantum computer that couldnt be solved with a conventional one, or even a supercomputer.

Its a forgone conclusion that quantum computing is going to happen. When it does, what we thought was a speed limit will evaporate. Nobodynobody!has an idea of what can come from this. I bet it might even be bigger than whatever Donald Trump will do in a second (or third or fourth) term, or the civil disorder that might erupt if he isnt returned to the Peoples House.

A few days after the election, on that same West Coast trip, I had a random street encounter with one of the most important leaders in technology. We spoke informally for maybe 15 or 20 minutes about what had happened. He seemed shattered by the outcome, but no more than pretty much everyone I knew. He told me that he asked himself, should I have done more? Like all of the top people in the industry, he has since had to make his accommodations with the Trump administration. But as with all his peers, he has not relented on his drive to create new technology that will continue the remarkable and worrisome transformation of humanity.

The kind of people who work for him will keep doing what they do. Maybe they will no longer want to work for a company thats overly concerned about winning the favoror avoiding the disfavorof a president who they think is racist, a president who despises immigrants (wife and in-laws excepted), a president who encourages dictators and casts doubts on voting. If things get bad in this country, a lot of those engineers and scientists will leave, and a lot of other countries will welcome them. The adventure will continue. Even if the United States as we know it does not last another generation, scientists will continue advancing artificial intelligence, brain-machine interfaces, and, of course, quantum computing. And thats what our time will be known for.

Yes, a thousand years from now, historians will study the Donald Trump phenomenon and what it meant for our gutsy little experiment in democracy, as well as for the world at large. I am still confident, however, that historians will find more importance in learning about the moments in our lifetimes when science changed everything.

What I am not confident about is predicting how those future historians will do their work, and to what extent people of our time would regard those historians as human beings, or some exotic quantum Crispr-ed cyborgs. Thats something that Donald Trump will have no hand in. And why its so important, even as politics intrude on our everyday existence, to do the work of chronicling this great and fearsome adventure.

Read more:
Quantum Computing Is Bigger Than Donald Trump - WIRED

Australia’s Archer and its plan for quantum world domination – ZDNet

Archer CEO Dr Mohammad Choucair and quantum technology manager Dr Martin Fuechsle

Quantum computing will revolutionise the world; its potential is so immeasurable that the greatest minds in Redmond, Armonk, and Silicon Valley are spending big on quantum development. But a company by the name of Archer Materials wants to put Sydney, Australia, on the map alongside, if not ahead, of these tech giants.

Universal quantum computers leverage the quantum mechanical phenomena of superposition and entanglement to create states that scale exponentially with the number of quantum bits (qubits).

Here's an explanation: What is quantum computing? Understanding the how, why and when of quantum computers

"Quantum computing represents the next generation of powerful computing, you don't really have to know how your phone works on the inside, you just want it to do things that you couldn't do before," Archer CEO Dr Mohammad Choucair told ZDNet.

"And with quantum computing, you can do things that you couldn't necessarily do before."

There is currently a very small set number of tasks that a quantum computer can do, but Choucair is hopeful that in the future this will grow to be a little bit more consumer-based and business-faced.

Right now, however, quantum computing, for all intents and purposes, is at a very early stage. It's not going to completely displace a classical computer, but it will give the capacity to do more with what we currently have. Choucair believes this will positively impact a range of sectors that are reliant on an increasing amount of computational power.

"This comes to light when you start to want to optimise very large portfolios, or perform a whole bunch of data crunching, AI and all sorts of buzzwords -- but ultimately, you're looking for more computational power. And you can genuinely get speed-ups in computational power based on certain algorithms for certain problems that are currently being identified," he explained.

"The problems that quantum computers can solve are currently being identified and the end users are being engaged."

Archer describes itself as a materials technology company. Its proposition is simple at heart: "Materials are the tangible physical basis of all technology. We're developing and integrating materials to address complex global challenges in quantum technology, human health, and reliable energy".

There are many components to quantum computing, but Archer is building a qubit processor. 12CQ is touted by the company as a "world-first technology that Archer aims to build for quantum computing operation at room-temperature and integration onboard modern electronic devices".

"We're not building the entire computer, we're building the chipset, the processer at the core of it," Choucair told ZDNet. "That really forms the brain of a quantum computer.

"The difference with us is that we really are looking at on-board use, rather than the heavy infrastructure that's required to house the existing quantum computing architectures.

"This is not all airy-fairy and it is not all of blue sky; it's real, there's proven potential, we've published the workwe have the data, we have the science behind us -- it took seven years of immense, immersive R&D."

Archer is building the chip inside a AU$180 million prototype foundry out of the University of Sydney. The funding was provided by the university as well as government.

"Everyone's playing their role to get this to market," he said.

Choucair is convinced that the potential when Archer "gets this right" will be phenomenal.

"Once you get a minimal viable product, and you can demonstrate the technology can indeed work at room temperature and be integrated into modern-day electronics. I think that's, that's quite disruptive. And it's quite exciting," he said.

Magnified region observing the round qubit clusters which are billionths of a meter in size in the centre of qubit control device components (appearing as parallel lines).

Choucair found himself at Archer in 2017 after the company acquired a startup he founded. Straight away, he and the board got started on the strategy it's currently executing on.

"There is very, very small margin for error from the start, in the middle, at the end -- you need to know what you're getting yourself into, what you're doingthis is why I think we've been able to be so successful moving forward, we've been so rapid in our development, because we know exactly what needs to get done," Choucair said.

"The chip is a world firstscience can fail at any stage, everybody knows that, but more often than not, it may or may not -- how uncertain do you want something to be? So for us, the more and more we develop our chip, the higher chances of success become."

Read more about Archer's commercial strategy here: Archer looks to commercialisation future with graphene-based biosensor tech

Choucair said materials technology itself was able to reduce a lot of the commercial barriers to entry for Archer, which meant the company could take the work out of the university much sooner.

"The material technology allowed us to do things without the need for heavy cooling infrastructure, which costs millions and millions of dollars and had to be housed in buildings that cost millions and millions of dollars,' he explained. "Massive barrier reduced, material could be made simply from common laboratory agents, which means you didn't have to build a billion-dollar facility to control atoms and do all these crazy scientific things at the atomic level.

"And so, really, you end up with the materials technology that was simple to handle, easy to make, and worked at room temperature, and you're like, wow, okay, so now the job for us is to actually build the chip and miniaturise this stuff, which is challenging in itself."

The CEO of the unexplainable has an impressive resum. He landed at Archer with a strong technical background in nanotechnology, served a two-year mandate on the World Economic Forum Global Council for Advanced Materials, is a fellow of both The Royal Society of New South Wales and The Royal Australian Chemical Institute, and was an academic and research fellow at the University of Sydney's School of Chemistry.

Choucair also has in his armoury Dr Martin Fuechsle, who is recognised for developing the world's smallest transistor, a "single-atom transistor".

"Fuechsle is among the few highly talented physicists in the world capable of building quantum devices that push the boundaries of current information processing technology," Choucair said in January 2019, announcing Fuechsle's appointment. "His skills, experience, and exceptional track record strongly align to Archer's requirements for developing our key vertical of quantum technology."

SEE:Guide to Becoming a Digital Transformation Champion(TechRepublic Premium)

Archer is publicly listed on the Australian Securities Exchange, but Choucair would reject any claims of it being a crazy proposition.

"20 years ago, a company that was maybe offering something as abstract as an online financial payment system would have been insane too, but if you have a look at the top 10 companies on the Nasdaqa lot of their core business is embedded in the development of computational architecture, computational hardware," he said.

"We're a very small company, I'm not comparing myself to a Nasdaq-listed company. I'm just saying, the core businessI think it's a unique offering and differentiates us on a stock exchange."

He said quantum technology is something that people are starting to value and see as having potential and scale of opportunity.

Unlike many of the other quantum players in Australia and abroad, Archer is not a result of a spin-off from a university, Choucair claimed.

"The one thing about Archer is that we're not a university spin out -- I think that's what sets us apart, not just in Australia, but globally," he said. "A lot of the time, the quantum is at a university, this is where you go to learn about quantum computing, so it's only natural that it does come out of a university."

Historically, Australia has a reputation of being bad at commercialising research and development. But our curriculum vitae speaks for itself: Spray-on skin, the black box flight recorder, polymer bank notes, and the Cochlear implant, to name a few.

According to Choucair, quantum is next.

"We really are leading the world; we well and truly punch above our weight when it comes to the work that's been done, we lead the world," he said.

"And that quantum technology is across quantum computing and photonics, and sensing -- it's not just quantum computing. We do have a lot of great scientists and those who are developing the technology."

But as highlighted in May by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in its quantum technologies roadmap, there are a lot of gaps that need to be filled over the long term.

"We just have to go out there and get the job done," Choucair said.

"In Australia we have resource constraints, just like anywhere else in the world. And I think there's always a lot more that can be donewe're not doing deep tech as a luxury in this country. From the very top down, there is an understanding, I believe, from our government and from key institutes in the nation that this is what will help us drive forward as a nation."

Archer isn't the only group focused on the promise of quantum tech down under, but Choucair said there's no animosity within the Aussie ecosystem.

Read about UNSW's efforts: Australia's ambitious plan to win the quantum race

There's also a partnership between two universities: UNSW and Sydney Uni quantum partnership already bearing fruit

"I think we all understand that there's a greater mission at stake here. And we all want, I can't speak on everyone's behalf, but at Archer we definitely have vision of making quantum computing widespread -- adopted by consumers and businesses, that's something that we really want to do," he said.

"We have fantastic support here in Australia, there's no doubt about it."

A lot of the work in the quantum space is around education, as Choucair said, it's not something that just comes out of abstractness and then just exists.

"You have to remember this stuff's all been built off 20, 30, 40 years of research and development, quantum mechanics, engineering, science, and tech -- hundreds and thousands of brilliant minds over the course of two-three generations," the CEO explained.

While the technology is here, and people are building algorithms that only run on quantum computers, there is still another 20-or-so years of development to follow.

"This field is not a fast follower field, you don't just get up in the morning and put your slippers on and say you're going to build a quantum computer," he added.

Archer is also part of the IBM Q Network, which is a global network of startups, Fortune 500 companies, and academic research institutes that have access to IBM's experts, developer tools, and cloud-based quantum systems through IBM Q Cloud.

Archer joined the network in May as the first Australian company that's developing a qubit processor.

Choucair said the work cannot be done without partnerships and collaboration alongside the best in the world.

"Yes, there is a race to build quantum computers, but I think more broadly than a race, to just enable the widespread adoption of the technology. And that's not easy. And that takes a concerted effort," he said. "And at this early stage of development, there is a lot of overlap and collaboration.

"There's a bit of a subculture that Australia can't do it -- yeah, we can.

"There's no excuses, right? We're doing it, we're building it, we're getting there. We're working with the very best in the world."

Read the original post:
Australia's Archer and its plan for quantum world domination - ZDNet