Archive for the ‘Quantum Computing’ Category

IonQ Scores Quantum Computing Deal With University Of Maryland And Announces Its Tripling 2021 Bookings – Forbes

IONQ

The relationship between higher education and the tech companies I cover as an analyst is close and mutually beneficial. The private sector often provides technology resources, capital, expertise, and knowledge of industry needs and challenges to research institutions, the sandbox of tomorrows tech innovators and leaders.

Quantum technology is at an exciting crossroads now, where it is beginning to migrate out of the realm of research and academia to seek out early commercialization opportunities. Much quicker and more powerful than traditional computing, quantum technology promises to revolutionize everything from medicine to climate science. It could very well change the world as we know it within our lifetimes.

So naturally, I immediately perked up at this weeks news of the University of Maryland (UMD)s $20 million, 3-year investment in quantum computing, the majority of which will go to IonQ, to co-develop a groundbreaking quantum laboratory at the College Park campus of the University.

The National Quantum Lab at Maryland, or Q-Lab for short, looks to be an ambitious project that could pay significant dividends in the efforts to advance and commercialize quantum technology. While I had initially viewed the word investment as a balance sheet impact, versus revenue, IonQ announced today it has tripled its bookings forecast for 2021, suggesting the UMD deal is very much a revenue event. To be clear, the tripling of bookings isnt only UMD, but includes other customers, too.

Lets look at the players, the deal and what it includes.

Something is happening in College Park

Based in College Park, MD, IonQ was founded in 2015 by Christopher Monroe, a professor at the University of Maryland and Jungsang Kim, a professor at Duke University (a great example of higher eds interconnectivity with the private sector). Built on its founders 25 years of academic quantum research, IonQs bread and butter is a subcategory of quantum computing known as trapped ion quantum computing. While a full explanation of trapped ion computing is well beyond the scope of this blog and more in Moor Insights & Strategys Quantum principal analyst Paul Smith-Goodson, know that it is one of the more promising proposed approaches to achieving a large-scale quantum computer.

UMD College Park, for its part, is known as a leading public research universityparticularly in the field of quantum computing. Marylands flagship university has invested approximately $300 million into the field of quantum science over the last 30-plus years and currently hosts over 200 quantum researchers and seven quantum facilities. The campus is already home to the Quantum Startup Foundry and the Mid-Atlantic Quantum Alliance, two organizations committed to advancing the nascent quantum ecosystem.

Q-lab promises to be the worlds first on-campus, commercial-grade quantum user facility. The stated goal of the Q-lab is to significantly democratize access to IonQs state-of-the-art technology, giving students, faculty and researchers hands-on experience with technology such as the companys 32-qubit trapped-ion quantum computer (the most performant quantum computer in operation). Lab users also stand to benefit from the opportunity to collaborate with IonQs quantum scientists and engineering experts, who will co-locate within the lab (which will be located next door to IonQs College Park headquarters).

IonQs market momentum

The announcement of the Q-lab comes along with a flurry of other exciting activity at IonQ. Last month, the company demonstrated its 4X16 Reconfigurable Multicore Quantum Architecture (RMQA), an industry first. IonQ says this breakthrough could enable it to boost its qubit count up to the triple digits on a single chip, also laying the groundwork for theoretical future Parallel Multicore Quantum Processing Units.

Another significant recent announcement from IonQ was that it will now offer its quantum systems on Google Cloud (the first quantum player to do so). For that matter, it is now the only quantum provider available via all three of the major cloud platforms (Microsoft Azure, Google Cloud and AWS) and through direct API access. I see this as another crucial way in which IonQ is democratizing access to quantum computers.

Additionally, the company recently announced a strategic integration with IBM Qiskit. This quantum software development kit will make it easier for quantum programmers to get up and running with IonQs systems. Rounding out the new developments was the announcement of a partnership with SoftBank Investment Advisors to facilitate enterprise deployment of quantum solutions worldwide.

All of these developments, including the Q-lab, considered, its no wonder today IonQ recently tripled its expectations for its 2021 contract bookings, from an original goal of $5 million to an ambitious $15 million. To be clear, the tripling of bookings isnt only UMD, but includes other customers, too. All of this must look good to investors, who will soon get a crack at the Quantum company when it goes public via a special purpose acquisition company (SPAC) later this month (a merger with dMY Technology Group, Inc) under $DMYI.

Wrapping up

With both a preeminent quantum research school and a private sector quantum leader located in College Park, the Maryland city could soon be a (if not the) veritable epicenter of quantum technology in the United States. The Q-lab has the potential to produce the next generation of quantum innovators, generate new quantum IP and draw even more quantum startups and scientific and engineering talent to College Park.

Were likely a bit away from recognizing quantum computings full potential as a paradigm shift. However, IonQs moves this summer demonstrate that the technology is entering a new, exciting phase of commercialization, which should only accelerate the process of innovation at research locations such as the new Q-lab. Ill be watching with interest.

From the business point of view, it is great to see IonQ drive orders and subsequently revenue. I hear from some of the uninformed that theres no money in quantum. I think the doubters are wrong and when we all get a closer look at IonQs financials, I believe there will be some surprises.

Moor Insights & Strategy, like all research and analyst firms, provides or has provided paid research, analysis, advising, or consulting to many high-tech companies in the industry, including 8x8, Advanced Micro Devices, Amazon, Applied Micro, ARM, Aruba Networks, AT&T, AWS, A-10 Strategies,Bitfusion, Blaize, Box, Broadcom, Calix, Cisco Systems, Clear Software, Cloudera,Clumio, Cognitive Systems, CompuCom, Dell, Dell EMC, Dell Technologies, Diablo Technologies, Digital Optics,Dreamchain, Echelon, Ericsson, Extreme Networks, Flex, Foxconn, Frame (now VMware), Fujitsu, Gen Z Consortium, Glue Networks, GlobalFoundries, Google (Nest-Revolve), Google Cloud, HP Inc., Hewlett Packard Enterprise, Honeywell, Huawei Technologies, IBM, Ion VR,IonQ, Inseego, Infosys, Intel, Interdigital, Jabil Circuit, Konica Minolta, Lattice Semiconductor, Lenovo, Linux Foundation,MapBox, Marvell,Mavenir, Marseille Inc, Mayfair Equity, Meraki (Cisco),Mesophere, Microsoft, Mojo Networks, National Instruments, NetApp, Nightwatch, NOKIA (Alcatel-Lucent), Nortek,Novumind, NVIDIA, Nuvia, ON Semiconductor, ONUG, OpenStack Foundation, Oracle, Poly, Panasas,Peraso, Pexip, Pixelworks, Plume Design, Poly,Portworx, Pure Storage, Qualcomm, Rackspace, Rambus,RayvoltE-Bikes, Red Hat,Residio, Samsung Electronics, SAP, SAS, Scale Computing, Schneider Electric, Silver Peak, SONY,Springpath, Spirent, Splunk, Sprint, Stratus Technologies, Symantec, Synaptics, Syniverse, Synopsys, Tanium, TE Connectivity,TensTorrent,TobiiTechnology, T-Mobile, Twitter, Unity Technologies, UiPath, Verizon Communications,Vidyo, VMware, Wave Computing,Wellsmith, Xilinx, Zebra,Zededa, and Zoho which may be cited in blogs and research.

Patrick was ranked the #1 analyst out of 8,000 in the ARInsights Power 100 rankings and the #1 most cited analyst as ranked by Apollo Research. Patrick founded Moor

Patrick was ranked the #1 analyst out of 8,000 in the ARInsights Power 100 rankings and the #1 most cited analyst as ranked by Apollo Research. Patrick founded Moor Insights & Strategy based on in his real-world world technology experiences with the understanding of what he wasnt getting from analysts and consultants. Moorhead is also a contributor for both Forbes, CIO, and the Next Platform. He runs MI&S but is a broad-based analyst covering a wide variety of topics including the software-defined datacenter and the Internet of Things (IoT), and Patrick is a deep expert in client computing and semiconductors. He has nearly 30 years of experience including 15 years as an executive at high tech companies leading strategy, product management, product marketing, and corporate marketing, including three industry board appointments.Before Patrick started the firm, he spent over 20 years as a high-tech strategy, product, and marketing executive who has addressed the personal computer, mobile, graphics, and server ecosystems. Unlike other analyst firms, Moorhead held executive positions leading strategy, marketing, and product groups. He is grounded in reality as he has led the planning and execution and had to live with the outcomes.Moorhead also has significant board experience. He served as an executive board member of the Consumer Electronics Association (CEA), the American Electronics Association (AEA) and chaired the board of the St. Davids Medical Center for five years, designated by Thomson Reuters as one of the 100 Top Hospitals in America.

Original post:
IonQ Scores Quantum Computing Deal With University Of Maryland And Announces Its Tripling 2021 Bookings - Forbes

Quantum Computing Will Soon Takeover the Tech-Sphere Leading the Digital Era – Analytics Insight

The word quantum gained momentum in the late twentieth century as a descriptor i.e., something so huge that it defied the normal adjectives. For instance, a quantum leap is an emotional headway with lots of drama in it. Now, at the point when quantum is applied to computing, nonetheless, we are without a doubt entering a time of emotional progression with dramatic advancement.

Quantum computing is an innovation that is dependent on the standards and principles of quantum theory, which clarifies the idea of energy and matter on the atomic and subatomic levels. It depends on the presence of mind-bending quantum-mechanical phenomena, like superposition and entanglement.

Erwin Schrdingers popular 1930s psychological experiment including a cat that was both dead and alive simultaneously was expected to feature the evident idiocy of superposition, the rule that quantum frameworks can exist in various states at the same time until noticed or estimated. Today, quantum computers contain many qubits (quantum bits), which exploit that very rule. Each qubit exists in a superposition of zero and one (for example has non-zero probabilities to be a zero or a one) until estimated. The improvement of qubits has suggestions for managing gigantic measures of data and accomplishing already impossible degrees of computing efficiency that are the tempting capability of quantum computing.

Different parties are adopting various strategies to quantum computing, so a single clarification of how it functions would be subjective. In a qubit, the whole circle can hold countless different states, and relating those states between qubits empowers certain connections that make quantum processing appropriate for an assortment of explicit assignments that old-style figuring cant achieve. Making qubits and keeping up with their reality adequately long to achieve quantum registering undertakings is a continuous ongoing challenge.

These are only the beginnings of the strange universe of quantum mechanics. By and by, in any case, a qubit of clever obscurity on how quantum figuring functions should get the job done for the time being. Quantum computings purpose is to help and expand the capacities of classical computing. Quantum computers will play out specific tasks significantly more productively than classical computers, giving us another device for explicit applications. Quantum computers wont replace their classical partners. Indeed, quantum computers require classical computers to help their specific capacities, like system optimization.

Quantum computers will be valuable in advancing answers for challenges in different fields like energy, finance, medical care, aviation among others. Their abilities will assist us with relieving infections, work on worldwide monetary business sectors, detangle traffic, battle environmental change and the sky is the only limit from there for the wonders quantum computing can make. For example, it can possibly accelerate drug discovery and advancement, and to work on the accuracy of the atmospheric models that are used to follow up and clarify environmental change and its hazardous impacts.

Intels 17-qubit superconducting test chip for quantum computing has unique features for improved connectivity and better electrical and thermo-mechanical performance. (Credit: Intel Corporation).

Not only this, but quantum computing is also responsible for the investments of millions of USDs into various giant corporations like IBM, Intel, Microsoft, etc. expecting an inevitable future of quantum computing led by qubits.

Quantum computers could likewise deliver correspondence safer in the manner data is teleported. Theres one more term related to science fiction films. Notwithstanding, the marvel of entanglement lies behind quantum mechanics: two qubits are connected together so that a change to one makes a change its relating qubit. This happens without delays, over any distance, and obviously with no actual association like links or radio waves.

Utilizing this thought key codes for information transmission could be produced. The shrewd thing here is that the quantum condition of the qubit changes with each unapproved access for instance, an assault from a programmer. The correspondence accomplices would see this as an unsettling influence in their correspondence, would consequently be cautioned, and could utilize another key. This way, we could actually put an end to cyber-attacks.

This way, quantum computings future glows brightly with no turnbacks leading to a glorious leap into the most advanced digital era.

Share This ArticleDo the sharing thingy

Read more:
Quantum Computing Will Soon Takeover the Tech-Sphere Leading the Digital Era - Analytics Insight

Quantum Computing Theorist Vojtech Vlcek Receives Research Award from DOE – HPCwire

Sept. 8, 2021 How can one predict a materials behavior on the molecular and atomic levels, at the shortest timescales? Whats the best way to design materials to make use of their quantum properties for electronics and information science?

These broad, difficult questions are the type of inquiries that UC Santa Barbara theorist Vojtech Vlcek and his lab will investigate as part of a select group of scientists chosen by the U.S. Department of Energy (DOE) to develop new operating frameworks for some of the worlds most powerful computers. Vlcek will be leading one of five DOE-funded projects to the tune of $28 million overall that will focus on computational methods, algorithms and software to further chemical and materials research, specifically for simulating quantum phenomena and chemical reactions.

Its really exciting, said Vlcek, an assistant professor in the Department of Chemistry and Biochemistry, and one of, if not the youngest researcher to lead such a major endeavor. We believe we will be for the first time able to not only really describe realistic systems, but also provide this whole framework for ultrafast and driven phenomena that will actually set the scene for future developments.

I congratulate Vojtech Vlcek on being selected for this prestigious grant, said Pierre Wiltzius, dean of mathematical, physical and life sciences at UC Santa Barbara. Its especially impressive and unusual for an assistant professor to lead this type of complex, multi-institution research project. Vojtech is in a league if his own, and I look forward to future insights that will come from the teams discoveries.

A Multilayer Framework

As part of the DOEs efforts toward clean energy technologies, scientists across the nation study matter and energy at their most fundamental levels. The goal is to design and discover new materials and processes that can generate, manipulate and store energy techniques that have applications in a wide variety of areas, including energy, environment and national security.

Uncovering these potentially beneficial phenomena and connecting them to the atoms they come from is hard work work that could be assisted with the use of the supercomputers that are housed in the DOEs national laboratories.

DOEs national labs are home to some of the worlds fastest supercomputers, and with more advanced software programs we can fully harness the power of these supercomputers to make breakthrough discoveries and solve the worlds hardest to crack problems, said U.S. Secretary of Energy Jennifer M. Granholm. These investments will help sustain U.S. leadership in science, accelerate basic energy and advance solutions to the nations clean energy priorities.

Among these hard-to-crack problems is the issue of many interacting particles. Interactions are more easily predicted in a system of a few atoms or molecules, or in very regular, periodic systems. But add more bodies or use more elaborate systems and the complexity skyrockets because the characteristics and behaviors of and interactions between every particle have to be accounted for. In some cases, their collective behaviors can produce interesting phenomena that cant be predicted from the behavior of individual particles.

People have been working with small molecules, or characterizing perfectly periodic systems, or looking at just a few atoms, Vlcek said, and more or less extending their dynamics to try to approximate the behaviors of larger, more complex systems.

This is not necessarily realistic, he continued. We want to simulate surfaces. We want to simulate systems that have large-scale periodicity. And in these cases you need to consider systems that are not on nanometer scales, but on the scale of thousands of atoms.

Add to that complexity non-equilibrium processes, which are the focus of Vlceks particular project. He will be leading an effort that involves an additional seven co-principal investigators from UC Berkeley, UCLA, Rutgers University, University of Michigan and Lawrence Berkeley National Laboratory.

Essentially these systems are driven by some strong external stimuli, like from lasers or other driving fields, he said. These processes are relevant for many applications, such as electronics and quantum information sciences.

The goal, according to Vlcek, is to develop algorithms and software based on a multilayer framework with successive layers of embedding theories to capture non-equilibrium dynamics. The team, in partnership with two DOE-supported Scientific Discovery through Advanced Computing (SciDAC) Institutes at Lawrence Berkeley and Argonne National Laboratories, begins with the most fundamental assumptions of quantum theory. That foundation is followed by layers that incorporate novel numerical techniques and neural network approaches to take advantage of the intensive computing the supercomputers can perform.

We still stay with the first principles approach, but were making successive levels of approximations, Vlcek explained. And with this approach well be able to treat extremely large systems. Among the many advantages of the methodology will be the ability for the first time to describe experimental systems in real-time, as they are driven by external forces.

The outcome of the project will be bigger than the sum of its parts, said Vlcek. Not only will it provide a method of studying and designing a wide variety of present and future novel materials, the algorithms are also meant for future supercomputers.

One interesting outcome will be that we will also try to connect to future computational platforms, which could possibly be quantum computers, he said. So this framework will actually allow future research on present and future novel materials as well as new theoretical research.

Source: UC Santa Barbara

Here is the original post:
Quantum Computing Theorist Vojtech Vlcek Receives Research Award from DOE - HPCwire

Atomically-Thin, Twisted Graphene Has Unique Properties That Could Advance Quantum Computing – Californianewstimes.com

A new collaborative study describes how electrons move through two different configurations of two-layer graphene, which is in the form of atomically thin carbon. These results provide insights that researchers can use to design more powerful and secure quantum computing platforms in the future.

Researchers explain how electrons move in two-dimensional layers Graphene, Findings that may lead to future design progress Quantum computing platform.

New research published in Physical review letter Describes how electrons move through two different configurations of two-layer graphene, which is an atomically thin form of carbon.This study was conducted at Brookhaven National Laboratory, University of Pennsylvania, New Hampshire University, Stony Brook University, and Columbia UniversityProvides insights that researchers can use to design more powerful and secure quantum computing platforms in the future.

Todays computer chips are based on knowledge of how electrons move in semiconductors, especially silicon, said Zhongwei Dai, the first co-author of a Brookhaven postdoc. But the physical properties of silicon are reaching their physical limits in how small transistors can be made and how many can fit on a chip. Quantum is shrinking in two-dimensional materials. Understanding how it works on a small scale of a few nanometers in another dimension could unleash another way to use electrons in quantum information science.

When a material is designed to a size of a few nanometers on these small scales, the electrons are confined in a space of the same dimensions as its own wavelength, and the overall electronic and optical properties of the material are a process that follows: It changes with. Quantum confinement. In this study, researchers used graphene to study these confinement effects on both electrons and photons, or particles of light.

This work relied on two independently developed advances in Penn and Brookhaven. Pen researchers, including former postdoctoral fellow Zhaoli Gao in Charlie Johnsons lab, currently enrolled at the Chinese University of Hong Kong, used their own gradients-alloy A growth substrate for growing graphene with three different domain structures: single layer, Bernal stack double layer, and twisted double layer. Next, the graphene material was transferred to a special substrate developed in Brookhaven. This allowed researchers to investigate both the electronic and optical resonances of the system.

This is a great collaboration, says Johnson. By combining the great features of Brookhaven and the pen, we can make important measurements and discoveries that none of us can do on our own.

Researchers have been able to detect both electronic and optical interlayer resonances, and have found that in these resonance states, electrons move back and forth across the 2D interface at the same frequency. Their results also suggest that the distance between the two layers increases significantly in a twisted configuration, which affects how electrons move due to interlayer interactions. They also found that twisting one of the graphene layers by 30 shifts the resonance to lower energies.

Devices made of rotated graphene can have very interesting and unexpected properties due to the large spacing between electrons that can move, said Julek Sadowski, co-author of Brookhaven. increase.

In the future, researchers will use twisted graphene to build new devices, and at the same time, based on the results of this study, adding various materials to the layered graphene structure will result in downstream electronic and optical properties. See how it affects you.

We look forward to continuing to work with our Brookhaven colleagues at the forefront of the application of 2D materials in quantum science, says Johnson.

See also: Quantum well bound state of graphene heterostructure interface by Zhongwei Dai, Zhaoli Gao, Sergey S. Pershoguba, Nikhil Tiwale, Ashwanth Subramanian, Qicheng Zhang, Calley Eads, Samuel A. Tenney, Richard M. Osgood, Chang-Yong Nam, Zhaoli Gao, AT Charlie Johnson and Jersey T. Sadowski, August 20, 2021 Physical review letter..DOI: 10.1103 / PhysRevLett.127.086805

The complete list of co-authors includes Zhaoli Gao (now the Chinese University of Hong Kong), Qicheng Zhang, and Charlie Johnson of the University of Pennsylvania. Brookhaven Zhongwei Dai, Nikhil Tiwale, Calley Eads, Samuel A. Tenney, Chang-Yong Nam, Jerzy T. Sadowski. Sergey S. Pershogub and Jiadong Zang of the University of New Hampshire. Ashwanth Subramanian of Stony Brook University; Richard M. Osgood of Columbia University.

Charlie Johnson is Professor Rebecca W. Bushnell of the Department of Physics and Astronomy, Faculty of Arts and Sciences, University of Pennsylvania.

This study is supported by National Science Foundation grants MRSECDMR-1720530 and EAGER1838412. Brookhaven National Laboratory is supported by the US Department of Energys Department of Science.

Atomically-Thin, Twisted Graphene Has Unique Properties That Could Advance Quantum Computing Source link Atomically-Thin, Twisted Graphene Has Unique Properties That Could Advance Quantum Computing

See more here:
Atomically-Thin, Twisted Graphene Has Unique Properties That Could Advance Quantum Computing - Californianewstimes.com

UMD, IonQ join forces to create the nation’s first quantum computing lab in College Park – The Diamondback

The University of Maryland and IonQ, a College Park-based quantum computing company, announced Wednesday that they will join forces to develop a facility that will give students, faculty, staff and researchers access to a commercial-grade quantum computer.

The new facility, which will be known as the National Quantum Lab at Maryland or Q-Lab for short is the product of a nearly $20 million investment from this university. As the nations first facility of its kind, it will also provide training related to IonQs hardware and allow visitors to collaborate with the companys scientists and engineers, according to a news release.

No other university in the United States is able to provide students and researchers this level of hands-on contact with commercial-grade quantum computing technology and insights from experts working in this emerging field, university President Darryll Pines said in the news release.

The Q-Lab will be located in the Discovery District next to IonQs headquarters by the College Park Airport, the news release stated.

Quantum computing attempts to evolve computer technology, striving to create a machine that can solve more problems at a faster rate.

[Whats new, whats coming, whats moving: The business scene in College Park]

Around the time IonQ announced its plans to go public earlier this year, Pines explained that classical computing uses a stream of electrical pulses called bits, which represent 1s and 0s, to store information. However, on the quantum scale, subatomic particles known as qubits are used to store information, greatly increasing computing speed.

Most importantly, we wanted to put our scientists at the cutting edge of quantum computers because we know that we already use supercomputers, Pines said Wednesday. But why not use the best computers that are right in our backyard?

Recent advancements in quantum computing also support research in areas such as biology, medicine, climate science and materials development, the release noted, adding that the creation of the Q-Lab may also attract additional entrepreneurs and startups to College Park.

We could not be more proud of IonQs success and we are excited to establish this strategic partnership, further solidifying UMD and the surrounding region as the Quantum Capital of the world, Pines added.

The development of the Q-Lab builds upon the universitys $300 million investment in quantum science and more than 30-year history of advancements in the field, according to the news release. The university also currently houses more than 200 researchers and seven centers specializing in quantum-related work.

We are very proud that the nations leading center of academic excellence in quantum research chose IonQs hardware for this trailblazing partnership, said Peter Chapman, the president and CEO of IonQ.

[UMD students allege poor living conditions, maintenance at University Club apartments]

Chris Monroe, a professor in this universitys physics department, and Jungsang Kim co-founded IonQ, which is set to become the first publicly traded commercialized quantum computing company. The company is estimated to go public with a valuation of nearly $2 billion.

The company recently became the first quantum computer supplier whose products are available on all major cloud services providers such as Google Cloud, Microsoft Azure and Amazon Web Services, according to the release.

Monroe and Kim also joined the White Houses National Quantum Initiative Advisory Committee in an effort to accelerate the development of the national strategic technological imperative, the news release stated.

UMD has been at the vanguard of this field since quantum computing was in its infancy, and has been a true partner to IonQ as we step out of the lab and into commerce, industry, and the public markets, Chapman said in the news release.

Senior staff writer Clara Niel contributed to this report.

Continue reading here:
UMD, IonQ join forces to create the nation's first quantum computing lab in College Park - The Diamondback