Archive for the ‘Quantum Computer’ Category

The Power of Epigenetics in Human Reproduction – Newswise

Newswise Addressing the mystery of how reproduction is shaped by childhood events and environment, Professor Philippa Melamed, together with PhD student Ben Bar-Sadeh, Postdoctorate Dr. Sergei Rudnizky, and colleagues Dr. Lilach Pnueli and Professor Ariel Kaplan, all from the Technion Faculty of Biology, and collaborators from the UK, Professor Gillian R. Bentley from Durham University and Professor Reinhard Stger from the University of Nottingham, have just published a paper in Nature Reviews Endocrinology on the role of epigenetics in human reproduction.

Epigenetics refers to the packaging of DNA, which can be altered in response to external signals (environment) through the addition of chemical tags to the DNA or the histone proteins that organize and compact the DNA inside the cell. This packaging affects the ability of a gene to be accessed and thus also its expression levels. So environmentally induced changes in this epigenetic packaging can lead to major variations in the phenotype (observable characteristics or traits) without changing the genetic code. This re-programming of gene expression patterns underlies some of our ability to adapt.

Reproductive characteristics are highly variable and responsive particularly to early life environment, during which they appear to be programmed to optimize an individuals reproductive success in accordance with the surroundings. Although some of these adaptations can be beneficial, they also carry negative health consequences that may be far-reaching. These include the age of pubertal onset and duration of the reproductive lifespan for women, and also the levels of circulating reproductive hormones; not only is fertility affected, but also predisposition to hormone-dependent cancers and other age-related diseases.

While epigenetic modifications are believed to play a role in the plasticity of reproductive traits, the actual mechanisms are mostly still not clear. Moreover, reproductive hormones also modify the epigenome and epigenetic aging, which complicates distinguishing cause from effect, particularly when trying to understand human reproductive phenotypes in which the relevant tissues are inaccessible for analysis. Integrated studies are needed, including observations and whatever measurements are possible in human populations, incorporation of animal models, cell culture, and even single-molecule studies, in order to determine the mechanisms responsible for the human reproductive phenotype.

The review emphasizes that there is a clinical need to understand the characteristics of epigenetic regulation of reproductive function and the underlying mechanisms of adaptive responses for properly informed decisions on treating patients from diverse backgrounds. In addition, this knowledge should form the basis for formulating lifestyle recommendations and novel treatments that utilize the epigenetic pathway to alter a reproductive phenotype.

Prof. Melamed emphasizes that a multifaceted cross-disciplinary approach is essential for elucidating the involvement of epigenetics in human reproductive function, spanning the grand scale of human cohort big data and anthropological studies in unique human populations, through animal models and cell culture experiments, to the exquisitely high resolution of single-molecule biophysical approaches. This will continue to require collaboration and cooperation.

For more than a century, the Technion - Israel Institute of Technology has pioneered in science and technology education and delivered world-changing impact. Proudly a global university, the Technion has long leveraged boundary-crossing collaborations to advance breakthrough research and technologies. Now with a presence in three countries, the Technion will prepare the next generation of global innovators. Technion people, ideas and inventions make immeasurable contributions to the world, innovating in fields from cancer research and sustainable energy to quantum computing and computer science to do good around the world.

The American Technion Society supports visionary education and world-changing impact through the Technion - Israel Institute of Technology. Based in New York City, we represent thousands of US donors, alumni and stakeholders who invest in the Technions growth and innovation to advance critical research and technologies that serve the State of Israel and the global good. Over more than 75 years, our nationwide supporter network has funded new Technion scholarships, research, labs, and facilities that have helped deliver world-changing contributions and extend Technion education to campuses in three countries.

Original post:
The Power of Epigenetics in Human Reproduction - Newswise

The Honeywell transition: From quantum computing to making masks – WRAL Tech Wire

CHARLOTTE Honeywell no longer sells its iconic home thermostats, but its still in the business of making control systems for buildings and aircraft.

Thats put the 114-year-old conglomerate in a tough spot as workplaces have gone vacant and flights grounded in response to the coronavirus pandemic.

Darius Adamczyk, who became CEO in 2017, spoke with The Associated Press about how the business is adjusting to the pandemic, diverting resources to build personal protective equipment and continuing a quest for a powerful quantum computer that works by trapping ions. The interview has been edited for length and clarity.

Q: How is the crisis affecting some of your your core business segments, especially aerospace?

A: The air transport segment obviously is impacted the most because its tied to air travel and production of new aircraft. Business aviation is depressed as well. The third segment, which has been fairly resilient, is defense and space. We expect to see growth in that segment even this year.

Q: Youve had to do layoffs?

A: Unfortunately, weve had to take some cost actions. Its a bit more drastic in aerospace and our (performance materials) business and much less so in some of the other businesses. Some of the actions weve taken have been to do temporary things. Weve created a $10 million dollar fund for employees who are financially impacted by COVID. We extended sick leave for a lot of our hourly employees. Taking care of our employees is the No. 1 priority and making sure that theyre healthy and safe, but also protecting the business long-term because the economic conditions are severe. Some of the levels of fall off here in Q2 are much more dramatic than we saw in the 2008/2009 recession.

Q: How did Honeywell get into building a quantum computer?

A: One of the bigger challenges in making a quantum computer work is the ability to really control the computer itself. The way we kind of came into this play is weve had the controls expertise, but we didnt have so much trapped ion expertise.

Q: How does your approach differ from from what Google and IBM have been trying to do?

A: I dont know exactly technically what theyre doing. Some of these things are very proprietary and very secret. But were very confident in terms of the public announcements and what weve been able to learn from some of the publicly available information that we, in fact, have the most powerful quantum computer in the world. Its going to get better and better by an order of magnitude every year.

Q: Howd you go about re-purposing factories in Rhode Island and Arizona to make respiratory masks?

A: We very quickly mobilized a couple of facilities that we werent fully utilizing. Something that would normally take us nine months took us literally four to five weeks to create. Weve gone from zero production to having two fully functioning facilities, making about 20 million masks a month.

Q: President Trump didnt wear a mask while visiting Honeywells Arizona factory in May. Did he talk to you about whether he should wear a mask?

A: No.

Q: What did he talk about?

A: He was very kind in his comments about the kind of contribution Honeywell has made, not just today, this crisis, but really in other times of crisis, such as in World War II and some of the other technologies that weve provided in the past. So I think it was certainly nice to hear.

Read the original:
The Honeywell transition: From quantum computing to making masks - WRAL Tech Wire

How Quantum Mechanics will Change the Tech Industry – Unite.AI

Richard Feynman once said, If you think you understand quantum mechanics, then you dont understand quantum mechanics. While that may be true, it certainly doesnt mean we cant try. After all, where would we be without our innate curiosity?

To understand the power of the unknown, were going to untangle the key concepts behind quantum physics two of them, to be exact (phew!). Its all rather abstract, really, but thats good news for us, because you dont need to be a Nobel-winning theoretical physicist to understand whats going on. And whats going on? Well, lets find out.

Well start with a brief thought experiment. Austrian physicist Erwin Schrdinger wants you to imagine a cat in a sealed box. So far, so good. Now imagine a vial containing a deadly substance is placed inside the box. What happened to the cat? We cannot know to a certainty. Thus, until the situation is observed, i.e. we open the box, the cat is both dead and alive, or in more scientific terms, it is in a superposition of states. This famous thought experiment is known as the Schrdingers cat paradox, and it perfectly explains one of the two main phenomena of quantum mechanics.

Superposition dictates that, much like our beloved cat, a particle exists in all possible states up until the moment it is measured. Observing the particle immediately destroys its quantum properties, and voil, it is once again governed by the rules of classical mechanics.

Now, things are about to get more tricky, but dont be deterred even Einstein was thrown-back by the idea. Described by the man himself as spooky action at a distance, entanglement is a connection between a pair of particles a physical interaction that results in their shared state (or lack thereof, if we go by superposition).

Entanglement dictates that a change in the state of one entangled particle triggers an immediate, predictable response from the remaining particle. To put things into perspective, lets throw two entangled coins into the air. Subsequently, lets observe the result. Did the first coin land on heads? Then the measurement of the remaining coin must be tales. In other words, when observed, entangled particles counter each others measurements. No need to be afraid, though entanglement is not that common. Not yet, that is.

Whats the point of all this knowledge if I cant use it?, you may be asking. Whatever your question, chances are a quantum computer has the answer. In a digital computer, the system requires bits to increase its processing power. Thus, in order to double the processing power, you would simply double the amount of bits this is not at all similar in quantum computers.

A quantum computer uses qubits, the basic unit of quantum information, to provide processing capabilities unmatched even by the worlds most powerful supercomputers. How? Superposed qubits can simultaneously tackle a number of potential outcomes (or states, to be more consistent with our previous segments). In comparison, a digital computer can only crunch through one calculation at a time. Furthermore, through entanglement, we are able to exponentially amplify the power of a quantum computer, particularly when comparing this to the efficiency of traditional bits in a digital machine. To visualise the scale, consider the sheer amount of processing power each qubit provides, and now double it.

But theres a catch even the slightest vibrations and temperature changes, referred to by scientists as noise, can cause quantum properties to decay and eventually, disappear altogether. While you cant observe this in real time, what you will experience is a computational error. The decay of quantum properties is known as decoherence, and it is one of the biggest setbacks when it comes to technology relying on quantum mechanics.

In an ideal scenario, a quantum processor is completely isolated from its surroundings. To do so, scientists use specialised fridges, known as cryogenic refrigerators. These cryogenic refrigerators are colder than interstellar space, and they enable our quantum processor to conduct electricity with virtually no resistance. This is known as a superconducting state, and it makes quantum computers extremely efficient. As a result, our quantum processor requires a fraction of the energy a digital processor would use, generating exponentially more power and substantially less heat in the process. In an ideal scenario, that is.

Weather forecasting, financial and molecular modelling, particle physics the application possibilities for quantum computation are both enormous and prosperous.

Still, one of the most tantalising prospects is perhaps that of quantum artificial intelligence. This is because quantum systems excel at calculating probabilities for many possible choices their ability to provide continuous feedback to intelligent software is unparalleled in todays market. The estimated impact is immeasurable, spanning across fields and industries from AI in the automotive all the way to medical research. Lockheed Martin, American aerospace giant, was quick to realise the benefits, and is already leading by example with its quantum computer, using it for autopilot software testing. Take notes.

The principles of quantum mechanics are also used to address issues in cybersecurity. RSA (Rivest-Shamir-Adleman) cryptography, one of the worlds go-to methods of data encryption, relies on the difficulty of factoring (very) large prime numbers. While this may work with traditional computers, which arent particularly effective at solving multi-factor problems, quantum computers will easily crack these encryptions thanks to their unique ability to calculate numerous outcomes simultaneously.

Theoretically, Quantum key distribution takes care of this with a superposition-based encryption system. Imagine youre trying to relay sensitive information to a friend. To do so, you create an encryption key using qubits, which are then sent to the recipient over an optical cable. Had the encoded qubits been observed by a third party, both you and your friend will have been notified by an unexpected error in the operation. However, to maximise the benefits of QKD, the encryption keys would have to maintain their quantum properties at all times. Easier said than done.

It doesnt stop there. The brightest minds around the globe are constantly trying to utilise entanglement as a mode of quantum communication. So far, Chinese researchers were able to successfully beam entangled pairs of photons through their Micius satellite over a record-holding 745 miles. Thats the good news. The bad news is that, out of the 6 million entangled photons beamed each second, only one pair survived the journey (thanks, decoherence). An incredible feat nonetheless, this experiment outlines the kind of infrastructure we may use in the future to secure quantum networks.

The quantum race also saw a recent breakthrough advancement from QuTech, a research centre at TU Delft in the Netherlands their quantum system operates at a temperature over one degree warmer than absolute zero (-273 degrees Celsius).

While these achievements may seem insignificant to you and I, the truth is that, try after try, such groundbreaking research is bringing us a step closer to the tech of tomorrow. One thing remains unchanged, however, and that is the glaring reality that those who manage to successfully harness the power of quantum mechanics will have supremacy over the rest of the world. How do you think they will use it?

Continue reading here:
How Quantum Mechanics will Change the Tech Industry - Unite.AI

Opinion |Dance of the synchronized quantum particles – Livemint

Three of our gang, you see, were women. On our second morning, all three found their periods had kicked in. They were so charmed and amused by this that they forgot any possible cramps or migraines. This was, they told us ignorant men, menstrual synchrony" the tendency for women who live together to begin menstruating on the same day every month. In 1971, a psychologist called Martha McClintock studied 180 women in a college dormitory. Menstrual synchrony, she concluded then, was real.

Now, this really didnt apply that weekend in NYC, because these ladies had only spent one day together. Besides, more recent research has questioned McClintocks findings. Even so, those long-ago NYC days came back to me after reading about some even more recent research, at IIT Kanpur. Not about menstruation, but about synchronization, and in the quantum world.

Whats synchronization? Imagine an individual a bird, a pendulum doing a particular motion over and over again. The bird is flapping its wings as it flies, the pendulum is swinging back and forth. Imagine several such individuals near each other, all doing the same motion several birds flying together in a flock, several pendulums swinging while hanging from a beam. When they start out, the birds are flapping to their own individual rhythms, the pendulums going in different directions. But then something beautiful happens: these individual motions synchronize. The birds flap in perfect coordination, so the flock moves as one marvellous whole. The pendulums swing in harmony.

In fact, synchronization was first observed in pendulums. In 1665, the great Dutch scientist Christiaan Huygens attached two pendulum clocks to a heavy beam. Soon after, the two pendulums were in lockstep.

Similarly, fireflies are known to break into spontaneous synchrony. When there are just one or a few, they light up at different timesa pleasant enough sight, but nothing to write home about. But there are spots in the coastal mangroves of Malaysia and Indonesia where whole hosts of the little insects congregate every evening and suddenly, synchrony happens. They switch on and off in perfect unison, putting on a light show like none youve seen.

There are, yes, other examples. At a concert, the audience will tend to applaud in sync. The reason we only ever see one side of the Moon is that the orbital and rotational periods of the Moon have, over time, synchronized with the rotation of our Earth. Your heart beats because the thousands of pacemaker" cells it contains pulse in synchrony. Some years ago, a bridge of a new and radical design was built over the Thames in London. When it was opened, people swarmed onto it on foot. It quickly started swaying disconcertingly from side to side enough, in turn, to force the pedestrians to walk in a certain awkward way just to keep their footing. On video, youll see hundreds of people on the bridge, all walking awkwardly but in step.

In his book Sync: The Emerging Science of Spontaneous Order, the mathematician Steven Strogatz writes: At the heart of the universe is a steady, insistent beat: the sound of cycles in sync. It pervades nature at every scale from the nucleus to the cosmos." He goes on to observe that this tendency for synchronization does not depend on intelligence, or life, or natural selection. It springs from the deepest source of all: the laws of physics". And thats where IIT Kanpur comes in.

In 2018, a team of Swiss researchers looked at the possibility of synchronization at the lower end of that scale that Strogatz mentions, or in some ways even off that end of the scale. Do the most elementary, fundamental particles known to physicists exhibit the same tendency to synchronize as somewhat larger objects such as starlings and pendulums and the moon? Were talking about electrons and neutrons, particles that occupy the so-called quantum" world. Can we get them to synchronize?

They concluded that the smallest quantum particles actually cannot be synchronized. These exhibit a spin"a form of angular momentum, in a sense the degree to which the particle is rotating of 1/2 (half). But there are ways in which such spin-half" particles can combine to form a spin-1" system, and the Swiss team predicted that these combinations are the smallest quantum systems that can be synchronized.

So, a physics research group at IIT Kanpur decided to test this prediction. These are guys, I should tell you, who are thoroughly accustomed to working with atoms: One day in 2016, their professor, Dr Saikat Ghosh, took me into their darkened lab and pointed to a small red glow visible in the middle of their apparatus. Thats a group of atoms," he said with a grin, and then tweaked some settings and the glow dropped out of sight. The point? They are able to manipulate atoms. On another visit, they underlined this particular skill by showing me their work with graphene, a sheet of carbon that is get this one atom thick.

So, after the Swiss prediction, Ghosh and his students took a million atoms of rubidiuma soft, silvery metal and cooled them nearly to whats known as absolute zero", or -273 Celsius. Could they get these atoms to show synchrony?

Lets be clear about what they were dealing with, though. The usual objects that synchronize pendulums, birds are called oscillators" because they are in some regular, rhythmic motion. Strictly, it is that motion of the oscillators that synchronizes. But were dealing here with objects we can see, which means the rules of classical" physics apply. Quantum objects like atoms behave differently. In fact, Ghosh told me that spin-1 atoms are not really oscillating in the same sense as pendulums and starlings in flight. Still, with that caveat in place, there are ways in which we can abstract their motion and treat them as oscillators.

In their experiment, the IIT team shot pulses of light at the group of rubidium atoms. Light is made up of photons, which are like minuscule bundles of energy. When they hit an atom, they flip" its spin. Embodied in that flip is the photons quantum information; in a real way, the photons are actually stored in these flipped atoms. This happens with such precision that you can later flip the atoms back and release the photons, thus retrieving" the stored light. In fact, with this storage and retrieval behaviour, the atoms are like memory cells, and this is part of the mechanism of quantum computing. (See my column from October 2018, Catch a quantum computer and pin it down).

But when the atoms are flipped and they store these photons, something else happens to them. When the light is retrieved, the IIT team found it displays interference fringes" a characteristic pattern of light and shadow (similar in concept to what causes stripes on tigers and zebras, or patterns in the sand on a beach). From this fringe pattern, the scientists can reconstruct the quantum state the atoms were inand voil, theres synchrony.

Did each individual atom synchronize to the light and since all one million atoms did so, is that how they are synchronized with each other as well? Thats to be tested still, but its a good way to think of what happened. Again, take fireflies. In one experiment, a single flashing LED bulb was placed in a forest. When the fireflies appeared, they quickly synchronized to the flashing bulb, and therefore to each other. As Dr Ghosh commented: two fireflies synchronizing is interesting, but an entire forest filled with fireflies lighting up in sync reveals new emergent patterns."

There are implications in all this for, among other things, quantum computing. The IIT teams paper remarks; [The] synchronization of spin-1 systems can provide insights in open quantum systems and find applications in synchronized quantum networks." (Observation of quantum phase synchronization in spin-1 atoms, by Arif Warsi Laskar, Pratik Adhikary, Suprodip Mondal, Parag Katiyar, Sai Vinjanampathy and Saikat Ghosh, published 3 June 2020).

There will be other applications too. But over 350 years after Christiaan Huygens stumbled on classical" synchronization, the IIT team has shown for the first time that this strangely satisfying behaviour happens in the quantum world too. No wonder their paper was chosen recently for special mention in the premier physics journal, Physical Review Letters.

A round of applause for the IIT folks, please. I know it will happen in synchrony.

Once a computer scientist, Dilip DSouza now lives in Mumbai and writes for his dinners. His Twitter handle is @DeathEndsFun

Subscribe to newsletters

* Enter a valid email

* Thank you for subscribing to our newsletter.

Link:
Opinion |Dance of the synchronized quantum particles - Livemint

MIT’s New Diamond-Based Quantum Chip Is the Largest Yet – Interesting Engineering

Researchers at MIT have developed a process to manufacture and integrate "artificial atoms" with photonic circuitry, and in doing so, are able to produce the largest quantum chip of its kind.

The atoms, which are created by atomic-scale defects in microscopically thin slices of diamond, allow for the scaling up of quantum chip production.

RELATED: 7 REASONS WHY WE SHOULD BE EXCITED BY QUANTUM COMPUTERS

The new development marks a turning point in the field of scalable quantum processors, Dirk Englund, an associate professor in MITs Department of Electrical Engineering and Computer Science, explained in a press release.

Millions of quantum processors will be required for the oncoming, much-hyped advent of quantum computing. This new research shows there is a viable way to scale up processor production, the MIT team says.

The qubits in the newly-developed chip are artificial atoms made from defects in diamond. These can be prodded with visible light and microwaves, making them emit photons that carry quantum information.

This hybrid approach is described by Englund and his colleagues in a study published inNature.The paper details how the team carefully selected "quantum micro chiplets" that contained multiple diamond-based qubits and integrated them onto an aluminum nitride photonic integrated circuit.

In the past 20 years of quantum engineering, it has been the ultimate vision to manufacture such artificial qubit systems at volumes comparable to integrated electronics, Englund explained. Although there has been remarkable progress in this very active area of research, fabrication and materials complications have thus far yielded just two to three emitters per photonic system.

Using their hybrid method, Englund and his team successfully built a 128-qubit system. In doing so, they made history by constructing the largest integrated artificial atom-photonics chip yet.

Its quite exciting in terms of the technology, Marko Lonar, Tiantsai Lin Professor of Electrical Engineering at Harvard University, who was not involved in the study, told MIT News. They were able to get stable emitters in a photonic platform while maintaining very nice quantum memories.

The next step for the researchers is to find a way to automate their process. In doing so, they will enable the production of even bigger chips, which will be necessary for modular quantum computers and multichannelquantum repeaters that transport qubits over long distances, the researchers say.

Originally posted here:
MIT's New Diamond-Based Quantum Chip Is the Largest Yet - Interesting Engineering