Artificial Intelligence in Operation Monitoring Discovers Patterns Within Drilling Reports – Journal of Petroleum Technology
Artificial Intelligence in Operation Monitoring Discovers Patterns Within Drilling Reports
You have access to this full article to experience the outstanding content available to SPE members and JPT subscribers.
To ensure continued access to JPT's content, please Sign In, JOIN SPE, or Subscribe to JPT
In well-drilling activities, successful execution of a sequence of operations defined in a well project is critical. To provide proper monitoring, operations executed during drilling procedures are reported in daily drilling reports (DDRs). The complete paper provides an approach using machine-learning and sequence-mining algorithms for predicting and classifying the next operation based on textual descriptions. The general goal is to exploit the rich source of information represented by the DDRs to derive methodologies and tools capable of performing automatic data-analysis procedures and assisting human operators in time-consuming tasks.
Classification Tasks. fastText. This is a library discussed in the literature designed to learn word embeddings and text classification. The technique implements a simple linear model with rank constraint, and the text representation is a hidden state that is used to feed classifiers. A softmax function computes the probability distribution over predefined classes.
Conditional Random Fields (CRFs). CRFs are a category of undirected graphical models that allow combination of features from each timestep of the sequence, with the ability to transit between labels for each episode in the input sequence. They were proposed to overcome the problem of bias that existed in techniques such as hidden Markov models and maximum-entropy Markov models.
Recurrent Models. Despite achieving good results in several scenarios and learning word embeddings as a byproduct of its training, the fastText classifier does not properly consider word-ordering information that can be useful for several classification tasks. Such a shortcoming can be addressed by a recurrent neural network (RNN), which considers the fact that a fragment of text is formed by an ordered sequence of words. The authors consider the gated recurrent unit variant, which is easier to train than traditional RNNs and achieves results comparable with those of the long short-term memory unit, while figuring fewer parameters to learn. The methodology of these classifiers is detailed mathematically in the complete paper.
Sequence Prediction. Sequential pattern mining can be defined broadly by the task of discovering interesting subsequences in a set of sequences, where the level of interest can be measured in terms of various criteria such as occurrence frequency, length, and profit, according to the application. The authors focus in this paper on the specific task of sequence prediction.
In the scenario considered, the alphabet is given by an ontology of operations of drilling activities. The sequence is defined according to data stored in DDRs. The proposed methodology considers various sequence prediction algorithms, specifically the following:
These algorithms are detailed in the complete paper. The sequential pattern mining framework (SPMF) was used for algorithm implementation. SPMF is an open-source data-mining library specialized in frequent pattern mining.
Data Sets. The data sets used for the experiments reported in this paper were extracted from different collections of DDRs. Each DDR entry is a record containing a rich set of information about the event being reported, which could be an operation or an occurrence. Two different types of data sets were generated, the operations data sets and the cost data set. The former is used by both classification and sequence prediction tasks, whereas the latter is only used for classification.
Operations Data Sets. The operations data sets were extracted from DDRs of 119 different wellbores, which comprise more than 90,000 entries. The DDR fields of most interest for the experiments applied on this collection are the description and the operation name. The former is a special field used by the reporter to fill in important details about the event in a free-text format. The latter is selected by the reporter from a predefined list of operation names.
For the sequence-mining tasks, only the operation name is used. The data set is viewed as a set of sequences of operations, one for each wellbore. For the classification tasks, both fields are used for supervised learning, with the description as input object and the operation name as label.
The DDRs were preprocessed by an industry specialist with the objective of, first, removing the inconsistencies and, second, normalizing operation names to unify operations that shared semantics. Given the large number of documents, the strategy used for the former objective was to remove entries with the wrong operation name (instead of fixing each one, which would be a much harder task). As for the second objective, after an analysis of the list of operation names and samples of descriptions, each group of overlapping operations was transformed into a single operation.
This process yielded a resulting data set containing more than 38,000 samples and 39 operation types for the classification task and another containing more than 51,000 samples and 41 operations types for the sequence-prediction task.
Costs Data Sets. The costs data set is a collection of DDRs with an extra field (the target field) meant to be used for calculating the cost of each operation performed in a wellbore project. That field usually is multivalued because more than one activity of interest being described might exist in the free-text field of a DDR entry. Each value in that list is a pair containing two types of information: a label for the activity described in the entry and a number pointing to a diameter value.
As opposed to the operations data set, the target field was filled on land by a small group of employees trained specifically for this task. Nevertheless, the costs data set still had to be preprocessed before use in the experiments.
Classification Results. Before evaluating the models, the best values for each hyperparameter are determined using the validation set through a grid search. The proposed models are trained for 30 epochs.
The experimental results regarding accuracy and macro-F1 measures for the costs and operations data sets are presented in the complete paper. In both cases, the fastText classifier, despite being quite simple, yields significant results, posing a strong baseline for the proposed models. Nevertheless, one should recall that the word vectors learned by this first classifier are used as the proposed model embeddings as well.
The other neural networks also consider the complete word ordering in the samples, allowing them to achieve results better than the baseline. Such metrics are further improved by replacing the traditional Softmax layer in the output layer by a CRF. This allows the model to label each entry in the segment not only based on its extracted characteristics but also with respect to the operations ordering. This allows the model to improve the baseline accuracy by 10.94 and 3.85% in the cost and operations data sets, respectively. The proposed model learns not only the most relevant characteristics from each sample but also the patterns in the sequence of operations performed in a well-drilling project.
Sequence-Mining Results. The data set was divided into 10 segments, and the methods were evaluated according to a cross-validation protocol. The cross-validation protocol varies the training and testing data through various executions in order to reduce any bias in the results. For the classification tasks, approaches based on word embeddings and CRFs are exploited. Evaluations were made considering sequences from size 5 to 10 in the data set, using the sequence-prediction methods to predict the next drilling operation.
Table 1 presents the accuracy obtained when considering the sequences of operations as presented in the data set. Table2 shows the accuracy obtained when removing consecutive drilling operations from the data. The data set contains multiple repetitions of operations, contiguous to one another. This makes the data more predictable to the sequence prediction model and explains the higher accuracy obtained in experiments shown in Table 1.
DDR Processing Framework. To make the models discussed available for use in a real-world scenario, a framework is proposed that allows the end user to upload DDRs and analyze them by different applications, one for each specific purpose. One great advantage of using this framework is that the user feeds data once and then has access to several tools for analyzing them.
Currently, a working version of an application for performing the classification tasks already has been implemented. It encapsulates the classification models generated with the experiments and allows the processing of a large number of DDRs, either for operation or cost classification.
- This Artificial Intelligence (AI) Stock Could Make Investors Richer by the End of 2026 - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- Unlocking the Full Potential of Body Cameras with Artificial Intelligence - R Street Institute - February 1st, 2026 [February 1st, 2026]
- A chatbot entirely powered by humans, not artificial intelligence? This Chilean community shows why - Washington Times - February 1st, 2026 [February 1st, 2026]
- This Artificial Intelligence (AI) Giant Is Up 72% Since the Start of 2025, and It Looks Even More Attractive in 2026 (Hint: Not Nvidia) - The Motley... - February 1st, 2026 [February 1st, 2026]
- This Artificial Intelligence (AI) Giant Is Up 72% Since the Start of 2025, and It Looks Even More Attractive in 2026 (Hint: Not Nvidia) - Nasdaq - February 1st, 2026 [February 1st, 2026]
- Prediction: Apple's Dominant Competitive Position Won't Fade in the Artificial Intelligence (AI) Age - Nasdaq - February 1st, 2026 [February 1st, 2026]
- Is Artificial Intelligence Ready For Its Close-Up? Hollywood vs. The Tillyverse - Investor's Business Daily - February 1st, 2026 [February 1st, 2026]
- How does artificial intelligence think? The big surprise is that it intuits - EL PAS English - February 1st, 2026 [February 1st, 2026]
- Why Disability Is The Ultimate Stress Test For Artificial Intelligence - Forbes - February 1st, 2026 [February 1st, 2026]
- Potential decline in US artificial intelligence stocks could have global repercussions: Survey - Anadolu Ajans - February 1st, 2026 [February 1st, 2026]
- The AI Revolution Hits the Office: How Artificial Intelligence Is Reshaping American Workplaces at Record Speed - WebProNews - February 1st, 2026 [February 1st, 2026]
- The Artificial Intelligence (AI) Stock That Refuses to Stay Down - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- 2 Under-the-Radar Artificial Intelligence (AI) Stocks to Watch Closely in February - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- 2 Trillion-Dollar Artificial Intelligence (AI) Stocks To Double Up on Right Now - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- Could This Be the Next Artificial Intelligence (AI) Stock to Join the Trillion-Dollar Club? - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- Elon Musk's plan to redesign the world's factories... and perhaps the planet too: humanoid robots that work 12 hours a day, never rest, and use... - February 1st, 2026 [February 1st, 2026]
- This Artificial Intelligence (AI) Stock Could Turn $1,000 Into $87,000 -- and Much More - Nasdaq - February 1st, 2026 [February 1st, 2026]
- The AI Doc: Or How I Became An Apocaloptimist: Think Of It As A First Date With Artificial Intelligence Sundance Studio - Deadline - February 1st, 2026 [February 1st, 2026]
- Billionaire Ken Griffin Buys 2 Artificial Intelligence (AI) Stocks Up 1,100% and 2,200% Since Early 2023 - Yahoo Finance - February 1st, 2026 [February 1st, 2026]
- Unlock AI's Potential Now: How Artificial Intelligence Is Transforming Jobs and Industries in 2026What You Need to Know - vocal.media - February 1st, 2026 [February 1st, 2026]
- Rancho Cordova invests in youth-led artificial intelligence innovation - CBS News - February 1st, 2026 [February 1st, 2026]
- Should You Forget BigBear.ai and Buy These 2 Artificial Intelligence (AI) Stocks Instead? - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- Artificial Intelligence News for the Week of January 30; Updates from Fujitsu, NVIDIA, VDURA & More - solutionsreview.com - February 1st, 2026 [February 1st, 2026]
- 2 Under-the-Radar Artificial Intelligence (AI) Stocks to Watch Closely in February - Nasdaq - February 1st, 2026 [February 1st, 2026]
- Bots boost budding brains: Plantersville academy students find help with their studies from artificial intelligence - Coastal Observer - February 1st, 2026 [February 1st, 2026]
- Could This Be the Next Artificial Intelligence (AI) Stock to Join the Trillion-Dollar Club? - AOL.com - February 1st, 2026 [February 1st, 2026]
- Op-Ed: How Artificial Intelligence Is Rewriting the Global Orderand Indias Role Within It - The Indian EYE - February 1st, 2026 [February 1st, 2026]
- The Inflection Point: How Artificial Intelligence Will Reshape Business Operations by 2026 - WebProNews - February 1st, 2026 [February 1st, 2026]
- This Popular Artificial Intelligence (AI) Stock Plunged by 49% in 2025. Here's What Could Happen Next. - The Motley Fool - February 1st, 2026 [February 1st, 2026]
- India Budget 2026 had 11 mentions of Artificial Intelligence: What are the AI- and IT-linked proposals by Finance Minister Nirmala Sitharaman? - WION - February 1st, 2026 [February 1st, 2026]
- The Top 3 Artificial Intelligence (AI) Chip Stocks to Buy With $50,000 in 2026 - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Geopolitics in the Age of Artificial Intelligence - Foreign Affairs - January 28th, 2026 [January 28th, 2026]
- Prediction: This Artificial Intelligence (AI) Stock Will Crush the Market in 2026 - Nasdaq - January 28th, 2026 [January 28th, 2026]
- Artificial intelligence will cost jobs, admits Liz Kendall - The Guardian - January 28th, 2026 [January 28th, 2026]
- Early enough to stop artificial intelligence from having social medias Jew-hatred problem, ADL says - JNS.org - January 28th, 2026 [January 28th, 2026]
- This Artificial Intelligence Stock Is a Must-Own for 2026 - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- January 28, 2025: Assessing Whether Ambient Artificial Intelligence Can Improve Health Practitioner Well-Being, in This Week's Rethinking Clinical... - January 28th, 2026 [January 28th, 2026]
- Artificial intelligence use linked to higher rates of depressive symptoms, study finds - ktvu.com - January 28th, 2026 [January 28th, 2026]
- Prediction: This Artificial Intelligence (AI) Stock Will Crush the Market in 2026 - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- The Best Artificial Intelligence (AI) Data Center Play You've Never Heard of for 2026 - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Finding new intelligence is an artificial ingredient for Lakewood Ranch club - yourobserver.com - January 28th, 2026 [January 28th, 2026]
- The Top 3 Artificial Intelligence (AI) Chip Stocks to Buy With $50,000 in 2026 - Nasdaq - January 28th, 2026 [January 28th, 2026]
- New Artificial Intelligence in Media Production Course Prepares the Next Generation of Journalists - The University of Northern Colorado - January 28th, 2026 [January 28th, 2026]
- International Publishers and Booksellers Discuss "Artificial Intelligence and Publishing Intelligence" - Publishing Perspectives - January 28th, 2026 [January 28th, 2026]
- Trust, attitudes and use of artificial intelligence: A global study 2025 - KPMG - January 28th, 2026 [January 28th, 2026]
- Cassava Technologies and AXON Networks Announce Strategic Partnership to Fuel Artificial Intelligence (AI) Adoption and Innovation Among African... - January 28th, 2026 [January 28th, 2026]
- Microsoft had pledged to save water. But now, driven by the artificial intelligence frenzy, the tech giant is projecting that water use at its data... - January 28th, 2026 [January 28th, 2026]
- Over 1.3 million people used BT Groups artificial intelligence solutions in 2025 - business-review.eu - January 28th, 2026 [January 28th, 2026]
- The Best Artificial Intelligence (AI) Data Center Play You've Never Heard of for 2026 - Finviz - January 28th, 2026 [January 28th, 2026]
- This Artificial Intelligence Stock Is a Must-Own for 2026 - The Globe and Mail - January 28th, 2026 [January 28th, 2026]
- The Most Undervalued Artificial Intelligence (AI) Stock on Wall Street Right Now - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Broken Kill Chain: Why DOD Artificial Intelligence is Our Most Dangerous Mission Yet - SOFREP - January 28th, 2026 [January 28th, 2026]
- How Artificial Intelligence Will Change the World - Nexford University - January 28th, 2026 [January 28th, 2026]
- Jim Cramer Believes Broadcom Represents One of the Cheaper Ways to Play Artificial Intelligence - Insider Monkey - January 28th, 2026 [January 28th, 2026]
- The debate over artificial intelligence and employment - Technology Org - January 28th, 2026 [January 28th, 2026]
- Four things everyone should know about artificial intelligence right now - wcnc.com - January 28th, 2026 [January 28th, 2026]
- This Artificial Intelligence (AI) Stock, Up 28,700% Since Its IPO, Could Be the Biggest Bargain of the Decade - Yahoo Finance - January 26th, 2026 [January 26th, 2026]
- Can This Artificial Intelligence (AI) Stock Justify Its Valuation? - The Motley Fool - January 26th, 2026 [January 26th, 2026]
- Universities and the Challenge of Artificial Intelligence - National Review - January 26th, 2026 [January 26th, 2026]
- Artificial intelligence at UGA and beyond: it is not as taboo as it seems - redandblack.com - January 26th, 2026 [January 26th, 2026]
- Generative Artificial Intelligence in Spectroscopy: Extending the Foundations of Chemometrics - Spectroscopy Online - January 26th, 2026 [January 26th, 2026]
- Rep. Blake Moore proposes turning artificial intelligence tools loose on bloated U.S. Code - cachevalleydaily.com - January 26th, 2026 [January 26th, 2026]
- 12% of American workers use artificial intelligence in their roles every day - Sherwood News - January 26th, 2026 [January 26th, 2026]
- This Artificial Intelligence (AI) Stock Is Trading at a Massive Discount Despite Red-Hot Growth - The Motley Fool - January 26th, 2026 [January 26th, 2026]
- Here's How Google Parent Alphabet Could Boost Revenue From Artificial Intelligence (AI) - Nasdaq - January 26th, 2026 [January 26th, 2026]
- Artificial Intelligence in Diagnostics Market, 2040 - ResearchAndMarkets.com - Business Wire - January 26th, 2026 [January 26th, 2026]
- AI and work: How artificial intelligence is reshaping our jobs - 960theref.com - January 26th, 2026 [January 26th, 2026]
- Artificial Intelligence in Healthcare: From Diagnosis to Rehabilitation - Cureus - January 26th, 2026 [January 26th, 2026]
- Here's How Google Parent Alphabet Could Boost Revenue From Artificial Intelligence (AI) - The Motley Fool - January 26th, 2026 [January 26th, 2026]
- Movie Review: In Mercy, Chris Pratt is on trial with an artificial intelligence judge - sentinelcolorado.com - January 26th, 2026 [January 26th, 2026]
- Ranking the Eagles' remaining OC candidates using artificial intelligence - Eagles Wire - January 26th, 2026 [January 26th, 2026]
- Agentic artificial intelligence takes over bots, simple business workflows - Anadolu Ajans - January 26th, 2026 [January 26th, 2026]
- From novelty to necessity: How artificial intelligence quietly embedded itself in Americas working life - Times of India - January 26th, 2026 [January 26th, 2026]
- UPDATE: Report finds artificial intelligence risks in education outweigh the benefits - EdSource - January 16th, 2026 [January 16th, 2026]
- This Artificial Intelligence (AI) Stock Has Jumped 328% in 1 Year. It Can Soar Higher After Feb. 3. (Hint: It's Not Palantir.) - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Colorado governor mentions rising cost of living, artificial intelligence and more in final State of the State address - KKTV - January 16th, 2026 [January 16th, 2026]
- Artificial intelligence: Council paves the way for the creation of AI gigafactories - consilium.europa.eu - January 16th, 2026 [January 16th, 2026]
- Artificial intelligence in the classroom: How a Winnipeg school is adapting to new technology - CBC - January 16th, 2026 [January 16th, 2026]
- How Artificial Intelligence Is Transforming the Banking Industry - RFID Journal - January 16th, 2026 [January 16th, 2026]
- Sky News host Caleb Bond says Artificial Intelligence will be the end of the world if people are not careful. - facebook.com - January 16th, 2026 [January 16th, 2026]