Archive for the ‘Quantum Computer’ Category

Quantum Computing Summer School Fellowship – Los Alamos National Laboratory

Summary of Program

The Quantum Computing Summer School is an immersive 10-week curriculum that includes tutorials from world-leading experts in quantum computation as well as one-on-one mentoring from LANL staff scientists who are conducting cutting-edge quantum computing research. Summer school fellowship recipients will be exposed to the theoretical foundations of quantum computation and will become skilled at programming commercial quantum computers, such as those developed by D-Wave Systems, Rigetti, and IBM. Roughly twenty students (with the precise number determined based on the applicant pool) will be awarded a fellowship from LANL for the summer school. The fellowship amount ranges from $7,500 to $15,500, based on academic rank (junior, senior, 1st year graduate student, etc.).

Applications for 2023 are open until January 22nd, 2023.

Invited speakers:Tameem Albash (University of New Mexico), Piotr Czarnik (Jagiellonian University), David Gosset (University of Waterloo), Aram Harrow (MIT), Robert Huang (Caltech), Nathan Killoran (Xanadu), Jarrod McClean (Google), Peter Shor (MIT), Guillaume Verdon, Stephan Woerner (IBM Research)

Invited speakers: Tameem Albash (University of New Mexico),Andrew Childs (University of Maryland),Elizabeth Crosson (University of New Mexico),Jens Eisert (Free University of Berlin),David Gosset (University of Waterloo),Shelby Kimmel (Middlebury College),Raymond Laflamme (Institute for Quantum Computing),Pavel Lougovski (Amazon Web Services),Mohan Sarovar (Sandia),Kristan Temme (IBM)

Invited Speakers: Scott Aaronson (UT Austin), Fernando Brandao (CalTech), Elizabeth Crosson (U New Mexico), Christopher Granade (Microsoft Research), Travis Humble (ORNL), John Martinis (Google), Margaret Martonosi (Princeton U), Jarrod McClean (Google), Seth Merkel (IBM), Chris Monroe (U Maryland), Alejandro Perdomo-Ortiz (Zapata Computing), Mauricio Reis (D-Wave), Will Zeng (Stanford U)

Invited Speakers: Sergio Boixo (Google), Alex Condello (D-Wave), Susan Coppersmith (Wisconsin), Ivan Deutsch (UNM), Jungsang Kim (IonQ / Duke), Daniel Lidar (USC), Doug McClure (IBM), Peter Shor (MIT), Matthias Troyer (Microsoft), Eleanor Rieffel (NASA), Will Zeng (Rigetti)

In the first 2 weeks, students will attend lectures given by world-leading experts from both academia and industry in quantum computing research. The lectures will cover the following topics:

Following the 2-week lecture period, each student will work on a research project in quantum computing for the remaining 8 weeks. For this research project, each student will be paired with a LANL mentor who will propose project topics and provide guidance. Each project will involve some hands-on programming of a quantum computer (either Rigetti's, IBMs, or D-Waves). If time permits, the student will begin preparing their results for publication.

The program will begin on June 5th, 2023 and will last 10 weeks.

Originally posted here:
Quantum Computing Summer School Fellowship - Los Alamos National Laboratory

The quantum race is here, and Colorado is poised to lead the pack – 9News.com KUSA

The quantum race is here, and Colorado is poised to lead the pack  9News.com KUSA

Go here to see the original:
The quantum race is here, and Colorado is poised to lead the pack - 9News.com KUSA

The Problem with Quantum Computers – Scientific American Blog Network

By now, most people have heard that quantum computing is a revolutionary technology that leverages the bizarre characteristics of quantum mechanics to solve certain problems faster than regular computers can. Those problems range from the worlds of mathematics to retail business, and physics to finance. If we get quantum technology right, the benefits should lift the entire economy and enhance U.S. competitiveness.

The promise of quantum computing was first recognized in the 1980s yet remains unfulfilled. Quantum computers are exceedingly difficult to engineer, buildand program. As a result, they are crippled by errors in the form of noise, faultsand loss of quantum coherence, which is crucial to their operation and yet falls apart before any nontrivial program has a chance to run to completion.

This loss of coherence (called decoherence), caused by vibrations, temperature fluctuations, electromagnetic waves and other interactions with the outside environment, ultimately destroys the exotic quantum properties of the computer. Given the current pervasiveness of decoherence and other errors, contemporary quantum computers are unlikely to return correct answers for programs of even modest execution time.

While competing technologies and competing architectures are attacking these problems, no existing hardware platform can maintain coherence and provide the robust error correction required for large-scale computation. A breakthrough is probably several years away.

The billion-dollar question in the meantime is, how do we get useful results out of a computer that becomes unusably unreliable before completing a typical computation?

Answers are coming from intense investigation across a number of fronts, with researchers in industry, academia and the national laboratories pursuing a variety of methods for reducing errors. One approach is to guess what an error-free computation would look like based on the results of computations with various noise levels. A completely different approach, hybrid quantum-classical algorithms, runs only the most performance-critical sections of a program on a quantum computer, with the bulk of the program running on a more robust classical computer. These strategies and others are proving to be useful for dealing with the noisy environment of todays quantum computers.

While classical computers are also affected by various sources of errors, these errors can be corrected with a modest amount of extra storage and logic. Quantum error correction schemes do exist but consume such a large number of qubits (quantum bits) that relatively few qubits remain for actual computation. That reduces the size of the computing task to a tiny fraction of what could run on defect-free hardware.

To put in perspective the importance of being stingy with qubit consumption, todays state-of-the-art, gate-based quantum computers, which use logic gates analogous to those forming the digital circuits found in the computer, smartphoneor tablet youre reading this article on, boast a mere 50 qubits. That is just a tiny fraction of the number of classical bits your device has available to it, typically hundreds of billions.

TAMING DEFECTS TO GET SOMETHING DONE

The trouble is, quantum mechanics challenges our intuition. So we struggle to figure out the best algorithms for performing meaningful tasks. To help overcome these problems, our team at Los Alamos National Laboratory is developing a method to invent and optimize algorithms that perform useful tasks on noisy quantum computers.

Algorithms are the lists of operations that tell a computer to do something, analogous to a cooking recipe. Compared to classical algorithms, the quantum kind are best kept as short as possible and, we have found, best tailored to the particular defects and noise regime of a given hardware device. That enables the algorithm to execute more processing steps within the constrained time frame before decoherence reduces the likelihood of a correct result to nearly zero.

In our interdisciplinary work on quantum computing at Los Alamos, funded by the Laboratory Directed Research and Development program, we are pursuing a key step in getting algorithms to run effectively. The main idea is to reduce the number of gates in an attempt to finish execution before decoherence and other sources of errors have a chance to unacceptably reduce the likelihood of success.

We use machine learning to translate, or compile, a quantum circuit into an optimally short equivalent that is specific to a particular quantum computer. Until recently, we have employed machine-learning methods on classical computers to search for shortened versions of quantum programs. Now, in a recent breakthrough, we have devised an approach that uses currently available quantum computers to compile their own quantum algorithms. That will avoid the massive computational overhead required to simulate quantum dynamics on classical computers.

Because this approach yields shorter algorithms than the state of the art, they consequently reduce the effects of noise. This machine-learning approach can also compensate for errors in a manner specific to the algorithm and hardware platform. It might find, for instance, that one qubit is less noisy than another, so the algorithm preferentially uses better qubits. In that situation, the machine learning creates a general algorithm to compute the assigned task on that computer using the fewest computational resources and the fewest logic gates. Thus optimized, the algorithm can run longer.

This method, which has worked in a limited setting on quantum computers now available to the public on the cloud, also takes advantage of quantum computers superior ability to scale-up algorithms for large problems on the larger quantum computers envisioned for the future.

New work with quantum algorithms will give both experts and nonexperts the tools to perform calculations on a quantum computer. Application developers can begin to take advantage of quantum computings potential for accelerating execution speed beyond the limits of conventional computing. These advances may bring us all several steps closer to having robust, reliable large-scale quantum computers to solve complex real-world problems that bring even the fastest classical computers to their knees.

Read more:
The Problem with Quantum Computers - Scientific American Blog Network

MIT researchers use quantum computing to observe entanglement – MIT News

  1. MIT researchers use quantum computing to observe entanglement  MIT News
  2. Did physicists create a wormhole in a quantum computer?  Nature.com
  3. A 'Wormhole' Built on a Quantum Computer Teleported Information as Predicted  ScienceAlert
  4. Google's quantum computer suggests that wormholes are real  Big Think
  5. A quantum computer has simulated a wormhole for the first time  New Scientist
  6. View Full Coverage on Google News

Follow this link:
MIT researchers use quantum computing to observe entanglement - MIT News

Post-Quantum Cryptography | CSRC – NIST

The Candidates to be Standardized and Round 4 Submissions were announced July 5, 2022. NISTIR 8413, Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process is now available.

NIST initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms.Full details can be found in the Post-Quantum Cryptography Standardization page.

In recent years, there has been a substantial amount of research on quantum computers machines that exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and integrity of digital communications on the Internet and elsewhere. The goal of post-quantum cryptography (also called quantum-resistant cryptography) is to develop cryptographic systems that are secure against both quantum and classical computers, and can interoperate with existing communications protocols and networks.

The question of when a large-scale quantum computer will be built is a complicated one. While in the past it was less clear that large quantum computers are a physical possibility, many scientists now believe it to be merely a significant engineering challenge. Some engineers even predict that within the next twenty or so years sufficiently large quantum computers will be built to break essentially all public key schemes currently in use. Historically, it has taken almost two decades to deploy our modern public key cryptography infrastructure. Therefore, regardless of whether we can estimate the exact time of the arrival of the quantum computing era, we must begin now to prepare our information security systems to be able to resist quantum computing.

Here is the original post:
Post-Quantum Cryptography | CSRC - NIST