Archive for the ‘Quantum Computer’ Category

Global Artificial Intelligence in Military Market (2020 to 2025) – Incorporation of Quantum Computing in AI Presents Opportunities -…

DUBLIN--(BUSINESS WIRE)--The "Artificial Intelligence in Military Market by Offering (Software, Hardware, Services), Technology (Machine Learning, Computer vision), Application, Installation Type, Platform, Region - Global Forecast to 2025" report has been added to ResearchAndMarkets.com's offering.

The Artificial Intelligence in military market is estimated at USD 6.3 billion in 2020 and is projected to reach USD 11.6 billion by 2025, at a CAGR of 13.1% during the forecast period.

The Artificial Intelligence in Military market includes major players such as BAE Systems Plc. (UK), Northrop Grumman Corporation (US), Raytheon Technologies Corporation (US), Lockheed Martin Corporation (US), Thales Group (US), L3Harris Technologies, Inc. (US), Rafael Advanced defense Systems (Israel), and IBM (US), among others. These players have spread their business across various countries includes North America, Europe, Asia Pacific, Middle East & Africa, and Latin America. COVID-19 has not affected the Ai in military market growth to some extent, and this varies from country to country. Industry experts believe that the pandemic has not affected the demand for Artificial Intelligence in the military market in defense applications.

Based on platform, the space segment of the Artificial Intelligence in military market is projected to grow at the highest CAGR during the forecast period

Based on platform, the space segment of the Artificial Intelligence in military market is projected to grow at the highest CAGR during the forecast period. The space AI segment comprises CubeSat and satellites. Artificial intelligence systems for space platforms include various satellite subsystems that form the backbone of different communication systems. The integration of AI with space platforms facilitates effective communication between spacecraft and ground stations.

Software segment of the Artificial Intelligence in Military market by offering is projected to witness the highest CAGR during the forecast period

Based on offering, the Software segment is projected to witness the highest CAGR during the forecast period. Technological advances in the field of AI have resulted in the development of advanced AI software and related software development kits. AI software incorporated in computer systems is responsible for carrying out complex operations. It synthesizes the data received from hardware systems and processes it in an AI system to generate an intelligent response. The software segment is projected to witness the highest CAGR owing to the significance of AI software in strengthening the IT framework to prevent incidents of a security breach.

The North American market is projected to contribute the largest share from 2020 to 2025 in the Artificial Intelligence in Military market

The US and Canada are key countries considered for market analysis in the North American region. This region is expected to lead the market from 2020 to 2025, owing to increased investments in AI technologies by countries in this region. This market is led by the US, which is increasingly investing in AI systems to maintain its combat superiority and overcome the risk of potential threats on computer networks. The US plans to increase its spending on AI in the military to gain a competitive edge over other countries.

The North American US is recognized as one of the key manufacturers, exporters, and users of AI systems worldwide and is known to have the strongest AI capabilities. Key manufacturers of Ai systems in the US include Lockheed Martin, Northrop Grumman, L3Harris Technologies, Inc., and Raytheon. The new defense strategy of the US indicates an increase in AI spending to include advanced capabilities in existing defense systems of the US Army to counter incoming threats.

Market Dynamics

Drivers

Restraints

Opportunities

Challenges

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/acjap9

Read more from the original source:
Global Artificial Intelligence in Military Market (2020 to 2025) - Incorporation of Quantum Computing in AI Presents Opportunities -...

The Quantum Age Will Require a Quantum Generation – Fair Observer

Bartlomiej K. Wroblewski / Shutterstock

Past the glow of the Shanghai evening, a single red beam threads its way into the silent stratosphere. It is a laser originating from a laboratory whose machinery few can operate or explain. The laser is meant to bounce off a distant satellite before returning for the purpose of encrypting an otherwise earthly conversation in a manner as secure as it (once) was impossible.

Chinas pursuit of quantum technologies, quantum supremacy and a leadership stake in the much-heralded quantum future awaiting us is as well documented as the United States similar quest. Additionally, opinions concerning quantum computings significance to global security, business and geopolitics range from comprehensive analyses of the industrys experts to the musings of its pluckiest amateurs. Just as bountiful are the resources both formally structured and open-sourced available to anyone interested in the technical functionality, universal physical properties, revolutionary new bits or pioneering logic gates powering such complex, world-changing machinery.

READ MORE

So, rather than using this space for another overloaded elucidation of quantum computings principles, our focus must pivot to the need for, and the already encouraging progress toward, educating the next generation of computer scientists, developers and engineers in what any of these words and concepts mean, what quantum computing is and, just as importantly, what it can be.

What quantum computing can be is the most significant technological, economic and governmental functionality in human history. It will empower its masters to blow away the capabilities available via traditional computers to solve problems in seconds that would take todays machines years to complete. What it will also be for some time is expensive, uncertain and a bit scary. But this is all the more evidence of our need to understand its most fruitful applications as well as its limitations, whatever those might be.

What quantum will be is what the next generation of students the most technologically-skilled cohort ever assembled refers to not as quantum, but simply as computing.

While the hype over quantum computings transformational capabilities across sectors, industries and regions has been building for decades, too many American public policy proposals in the quantum realm have begun and ended with public investment in hardware, sparing little attention or resources for the education of the next generation of engineers who for any national quantum program or policy to succeed must be equipped to use it. Some encouraging developments, however, indicate that the importance of quantum education and a quantum-skilled workforce may finally be taking root. There are several entities leading the charge to identify quantum education as a critical need, as collections of the right leaders in the right rooms (virtual or otherwise) are currently conducting the first wave of conversations necessary to educate the workforce the quantum age will require.

The first such institution is the US Army. Placing a renewed emphasis on the development of its people, and the attraction of top industry talent to roles of public service, the US Army has led the way from a federal standpoint in committing to the modernization of its workforce for the quantum age. Though encouraging, it is important to note that such an undertaking must be generational in its scope and investment to be successful, as the biggest organizations, like the biggest ships, change direction most slowly.

The national security implications of quantum computers are a likely driving force behind the Armys design of its Quantum Leap initiative. With that said, it is encouraging that given those concerns, the Army has responded with a people-first focus on developing, attracting and retaining the kind of talent necessary to steward the weaponry of the future capably and responsibly.

A layer beneath the modernization of federal agencies sits the collaborative approach of the US National Science Foundation, the White House Office of Science and Technology Policy, and a smattering of the countrys largest technology firms referred to as the National Q-12 Education Partnership. The appeal of such a public-private endeavor is clear and mutual, as both Americas public and private entities have a stake in seeing the next generation of quantum leaders developed in the US.

Such partnerships should set ambitious goals for themselves and inclusively embrace the full breadth of talent waiting for them within a generation that is as unprecedentedly tech-savvy as it is diverse. Quantum must be more than yet another driver of inequality. Its transformational potential is too great to hoard in Palo Alto or Cambridge. As such, partnerships like these must emphasize the inclusion of institutions like Americas historically black colleges and universities which have done tremendous work to close achievement gaps in STEM fields to tap their talents as indispensable leaders of this historic educational effort.

Finally, local initiatives to educate the next generation of quantum engineers mark perhaps the most American solution to this challenge of all. University leaders should take a lesson from their counterparts at UC Santa Barbara who are partnering with local school districts to tailor quantum educational programming to students of all ages and ability levels. While federal support for such programming is surely welcome, universities and K-12 institutions need not wait for Washington to start training and identifying the future leaders of a quantum age approaching as fast as the photons flying over Shanghai.

Quantum computers, like traditional computers, televisions, toasters, phones and radios, will be neither good nor bad. But they will be here, available for common personal and business use, soon. Education in their design, functionality and best uses will allow for the formulation of informed, forward-looking, strategic, quantum computing governance policies rooted outside of the binary choice between ignorant cynicism and naive optimism. Rooted, that is, in the messy nuances of reality and the goal of every stubborn innovator to not just build the thing right, but to build the right thing.

The views expressed in this article are the authors own and do not necessarily reflect Fair Observers editorial policy.

Here is the original post:
The Quantum Age Will Require a Quantum Generation - Fair Observer

What is cloud-based quantum computing and How does it work? – Medium

credit: cloud.report

Quantum computers really do represent the future generation of computing. Cloud-based quantum computing is tougher to drag off than AI, therefore the ramp-up is going to be slower, and therefore the learning curve vessel attributable to the rather nebulous science behind it, a sensible, operating quantum computer remains a flight of fancy. Bits are the elemental computing units, however, they will store only two values 0 and 1. Developers use quantum computing to encrypt issues as qubits, that work out multiple mixtures of variables promptly instead of exploring every possibility discretely. The deployment of quantum circuits and therefore the support systems necessary for their operation could be an expensive and troublesome process. Among the scope of the analysis, firms that already use these systems modify cloud-based quantum computing via the platforms they build.

Many startups and technology giants, together with Microsoft, IBM, and Google, acknowledge the worth of creating progress during this field, as this is often so successive major step in technology and computing. Quantum computers area unit lightning-fast compared to a typical Windows 10 computer or a macOS computer that makes them even quicker than the foremost powerful supercomputers we have these days. Once users area unit allowed to access quantum physics-powered computers via the web, then its quantum computing within the cloud.

Rigetti computing could be a startup that has developed a quantum processor thats in operation and Computing 128 qubits. They recently declared a Quantum Cloud Service, that developed on its existing quantum computing within the Cloud programming toolkit. This service can bring each ancient and quantum computer along on one cloud platform to assist users to build applications exploitation the ability of qubit technology.

Bill Gates~ It isnt clear when it will work or become mainstream. There is a chance that within 610 years that cloud computing will offer super-computation by using quantum. It could help use solve some very important science problems including materials and catalyst design.

It will create a distinction in several areas with enhancements in implementation and error correction. This new technology can reach a useful purpose with the participation of a lot of individuals and their collaboration. Cloud-based quantum computing offers an immediate interface to quantum circuits and quantum chips sanctioning final testing of quantum algorithms and provides how that allows individuals to create enhancements in quantum computing. Businesses and other domains will apply by exploitation QC on the cloud and dont ought to look forward to quantum computing technology being mature and widespread.

See original here:
What is cloud-based quantum computing and How does it work? - Medium

Will Quantum Computers Break Bitcoin and the Internet? Heres the Outlook From Quantum Physicist Anastasia Marchenkova – The Daily Hodl

A Quantum physicist is revealing that while quantum computers pose no risk to Bitcoin mining, they threaten the algorithms that keep Bitcoin and the internet secure.

In a recent video, Anastasia Marchenkova argues Bitcoin has a built-in design that protects it against entities using quantum algorithms to mine BTC at a rapid rate.

Lets say one day we actually did discover a quantum algorithm that could solve this faster. Bitcoin is designed to adjust the difficulty if we mine blocks too fast. So even if we found this quantum algorithm, the difficulty would just get harder.

However, the quantum physicist warns that quantum computing poses a serious risk to cryptographic algorithms which keep cryptocurrencies and the internet at large secure.

Theres two common cryptosystems RSA and elliptic curve encryption and these are affected by quantum computers. When youre online, information that you send is encrypted, often with these two. Both of these are vulnerable to attacks by quantum computers which means a large enough quantum computer will be a problem for anyone online

There actually is a quantum algorithm to break RSA and elliptic curve encryption. Bitcoin does use elliptic curve encryption (ECC) to generate the public key, which is created from the private key which authorizes transactions

That means that someone with a large enough and coherent enough quantum computer, with coherence meaning the length of time the quantum information can be stored, can actually get your private key from your public key and thats a very serious problem That private key can then be used to authorize transactions that the owner doesnt want to have happen. So as quantum computers become better and better, the security of RSA and elliptic curve is no longer effective.

Crypto sleuths continue to track the advancement of quantum machines. They have the capability to crack complex mathematical problems using quantum bits, or quibits, which can maintain a superimposition by being in two states at the same time.

While the future of cryptocurrencies may be threatened, Marchenkova says digital assets can adopt developments that can effectively resist quantum-based attacks.

So well need to pick an algorithm that can actually stand up to quantum attacks. We call this post-quantum cryptography which are classical algorithms not based on quantum principles that can stand up to quantum computing attacks. One of the current leading candidates is lattice-based cryptography

Another approach is using asymmetric cryptography like AES (advanced encryption standard) which is weakened by quantum computers but not broken in such a manner like RSA and elliptic curve

There are also other coins already using hash-based cryptography. And so far, like I mentioned, hash-based cryptosystems actually resist quantum computing attacks. We dont know if thats going to hold true forever but so far that seems to be the case.

I

Featured Image: Shutterstock/GrandeDuc

Read the original:
Will Quantum Computers Break Bitcoin and the Internet? Heres the Outlook From Quantum Physicist Anastasia Marchenkova - The Daily Hodl

Quantum computer | computer science | Britannica

Quantum computer, device that employs properties described by quantum mechanics to enhance computations.

Britannica Quiz

Computers and Technology Quiz

Computers host websites composed of HTML and send text messages as simple as...LOL. Hack into this quiz and let some technology tally your score and reveal the contents to you.

As early as 1959 the American physicist and Nobel laureate Richard Feynman noted that, as electronic components begin to reach microscopic scales, effects predicted by quantum mechanics occurwhich, he suggested, might be exploited in the design of more powerful computers. In particular, quantum researchers hope to harness a phenomenon known as superposition. In the quantum mechanical world, objects do not necessarily have clearly defined states, as demonstrated by the famous experiment in which a single photon of light passing through a screen with two small slits will produce a wavelike interference pattern, or superposition of all available paths. (See wave-particle duality.) However, when one slit is closedor a detector is used to determine which slit the photon passed throughthe interference pattern disappears. In consequence, a quantum system exists in all possible states before a measurement collapses the system into one state. Harnessing this phenomenon in a computer promises to expand computational power greatly. A traditional digital computer employs binary digits, or bits, that can be in one of two states, represented as 0 and 1; thus, for example, a 4-bit computer register can hold any one of 16 (24) possible numbers. In contrast, a quantum bit (qubit) exists in a wavelike superposition of values from 0 to 1; thus, for example, a 4-qubit computer register can hold 16 different numbers simultaneously. In theory, a quantum computer can therefore operate on a great many values in parallel, so that a 30-qubit quantum computer would be comparable to a digital computer capable of performing 10 trillion floating-point operations per second (TFLOPS)comparable to the speed of the fastest supercomputers.

During the 1980s and 90s the theory of quantum computers advanced considerably beyond Feynmans early speculations. In 1985 David Deutsch of the University of Oxford described the construction of quantum logic gates for a universal quantum computer, and in 1994 Peter Shor of AT&T devised an algorithm to factor numbers with a quantum computer that would require as few as six qubits (although many more qubits would be necessary for factoring large numbers in a reasonable time). When a practical quantum computer is built, it will break current encryption schemes based on multiplying two large primes; in compensation, quantum mechanical effects offer a new method of secure communication known as quantum encryption. However, actually building a useful quantum computer has proved difficult. Although the potential of quantum computers is enormous, the requirements are equally stringent. A quantum computer must maintain coherence between its qubits (known as quantum entanglement) long enough to perform an algorithm; because of nearly inevitable interactions with the environment (decoherence), practical methods of detecting and correcting errors need to be devised; and, finally, since measuring a quantum system disturbs its state, reliable methods of extracting information must be developed.

Plans for building quantum computers have been proposed; although several demonstrate the fundamental principles, none is beyond the experimental stage. Three of the most promising approaches are presented below: nuclear magnetic resonance (NMR), ion traps, and quantum dots.

In 1998 Isaac Chuang of the Los Alamos National Laboratory, Neil Gershenfeld of the Massachusetts Institute of Technology (MIT), and Mark Kubinec of the University of California at Berkeley created the first quantum computer (2-qubit) that could be loaded with data and output a solution. Although their system was coherent for only a few nanoseconds and trivial from the perspective of solving meaningful problems, it demonstrated the principles of quantum computation. Rather than trying to isolate a few subatomic particles, they dissolved a large number of chloroform molecules (CHCL3) in water at room temperature and applied a magnetic field to orient the spins of the carbon and hydrogen nuclei in the chloroform. (Because ordinary carbon has no magnetic spin, their solution used an isotope, carbon-13.) A spin parallel to the external magnetic field could then be interpreted as a 1 and an antiparallel spin as 0, and the hydrogen nuclei and carbon-13 nuclei could be treated collectively as a 2-qubit system. In addition to the external magnetic field, radio frequency pulses were applied to cause spin states to flip, thereby creating superimposed parallel and antiparallel states. Further pulses were applied to execute a simple algorithm and to examine the systems final state. This type of quantum computer can be extended by using molecules with more individually addressable nuclei. In fact, in March 2000 Emanuel Knill, Raymond Laflamme, and Rudy Martinez of Los Alamos and Ching-Hua Tseng of MIT announced that they had created a 7-qubit quantum computer using trans-crotonic acid. However, many researchers are skeptical about extending magnetic techniques much beyond 10 to 15 qubits because of diminishing coherence among the nuclei.

Just one week before the announcement of a 7-qubit quantum computer, physicist David Wineland and colleagues at the U.S. National Institute for Standards and Technology (NIST) announced that they had created a 4-qubit quantum computer by entangling four ionized beryllium atoms using an electromagnetic trap. After confining the ions in a linear arrangement, a laser cooled the particles almost to absolute zero and synchronized their spin states. Finally, a laser was used to entangle the particles, creating a superposition of both spin-up and spin-down states simultaneously for all four ions. Again, this approach demonstrated basic principles of quantum computing, but scaling up the technique to practical dimensions remains problematic.

Quantum computers based on semiconductor technology are yet another possibility. In a common approach a discrete number of free electrons (qubits) reside within extremely small regions, known as quantum dots, and in one of two spin states, interpreted as 0 and 1. Although prone to decoherence, such quantum computers build on well-established, solid-state techniques and offer the prospect of readily applying integrated circuit scaling technology. In addition, large ensembles of identical quantum dots could potentially be manufactured on a single silicon chip. The chip operates in an external magnetic field that controls electron spin states, while neighbouring electrons are weakly coupled (entangled) through quantum mechanical effects. An array of superimposed wire electrodes allows individual quantum dots to be addressed, algorithms executed, and results deduced. Such a system necessarily must be operated at temperatures near absolute zero to minimize environmental decoherence, but it has the potential to incorporate very large numbers of qubits.

Read the original:
Quantum computer | computer science | Britannica