Archive for the ‘Quantum Computer’ Category

How Nvidia co-founder plans to turn Hudson Valley into a tech powerhouse greater than Silicon Valley – New York Post

A co-founder of chip maker Nvidia is bankrolling a futuristic quantum computer system at Rensselaer Polytechnic Institute and wants to turn New Yorks Hudson Valley into a tech powerhouse.

Curtis Priem, 64, donated more than $75 million so that the Albany-area college could obtain the IBM-made computer the first such device on a university campus anywhere in the world, the Wall Street Journal reported.

The former tech executive and RPI alum said his goal is to establish the area around the school, based in Troy, into a hub of talent and business as quantum computing becomes more mainstream in the years ahead.

Weve renamed Hudson Valley as Quantum Valley, Priem told the Journal. Its up to New York whether they want to become Silicon State not just a valley.

The burgeoning technology uses subatomic quantum bits, or qubits, to process data much faster than conventional binary computers. The devices are expected to play a key role in the development of advanced AI systems.

Priem will reportedly fund the whopping $15 million per year required to rent the computer, which is kept in a building that used to be a chapel on RPIs campus.

RPI PresidentMartin Schmidt told the newspaper that the school will begin integrating the device into its curriculum and ensure it is accessible to the student body.

Representatives for IBM and RPI did not immediately return The Posts request for comment.

An electrical engineer by trade, Priem co-founded Nvidia alongside its current CEO Jensen Huang and Chris Malachowsky in 1993. He served as the companys chief technology officer until retiring in 2003.

Priem sold most of his stock in retirement and used the money to start a charitable foundation.

He serves as vice chair of the board at RPI and has reportedly donated hundreds of millions of dollars to the university.

Nvidia has surged in value as various tech firms rely on its computer chips to fuel the race to develop artificial intelligence.

The companys stock has surged 95% to nearly $942 per share since January alone. Nvidias market cap exceeds $2.3 trillion, making it the worlds third-most valuable company behind Microsoft and Apple.

In November 2023, Forbes estimated that Priem would be one of the worlds richest people, with a personal fortune of $70 billion, if he hadnt sold off most of his Nvidia shares.

Go here to read the rest:
How Nvidia co-founder plans to turn Hudson Valley into a tech powerhouse greater than Silicon Valley - New York Post

Aramco signs agreement with Pasqal to deploy first quantum computer in the Kingdom of Saudi Arabia – Aramco

Aramco, one of the worlds leading integrated energy and chemicals companies, has signed an agreement with Pasqal, a global leader in neutral atom quantum computing, to install the first quantum computer in the Kingdom of Saudi Arabia.

The agreement will see Pasqal install, maintain, and operate a 200-qubit quantum computer, which is scheduled for deployment in the second half of 2025.

Ahmad Al-Khowaiter, Aramco EVP of Technology & Innovation, said: Aramco is delighted to partner with Pasqal to bring cutting-edge, high-performance quantum computing capabilities to the Kingdom. In a rapidly evolving digital landscape, we believe it is crucial to seize opportunities presented by new, impactful technologies and we aim to pioneer the use of quantum computing in the energy sector. Our agreement with Pasqal allows us to harness the expertise of a leading player in this field, as we continue to build state-of-the-art solutions into our business. It is also further evidence of our contribution to the growth of the digital economy in Saudi Arabia.

Georges-Olivier Reymond, Pasqal CEO & Co-founder, said: The era of quantum computing is here. No longer confined to theory, it's transitioning to real-world applications, empowering organisations to solve previously intractable problems at scale. Since launching Pasqal in 2019, we have directed our efforts towards concrete quantum computing algorithms immediately applicable to customer use cases. Through this agreement, we'll be at the forefront of accelerating commercial adoption of this transformative technology in Saudi Arabia. This isn't just any quantum computer; it will be the most powerful tool deployed for industrial usages, unlocking a new era of innovation for businesses and society.

The quantum computer will initially use an approach called analog mode. Within the following year, the system will be upgraded to a more advanced hybrid analog-digital mode, which is more powerful and able to solve even more complex problems.

Pasqal and Aramco intend to leverage the quantum computer to identify new use cases, and have an ambitious vision to establish a powerhouse for quantum research within Saudi Arabia. This would involve leading academic institutions with the aim of fostering breakthroughs in quantum algorithm development a crucial step for unlocking the true potential of quantum computing.

The agreement also accelerates Pasqal's activity in Saudi Arabia, having established an office in the Kingdom in 2023, and follows the signing of a Memorandum of Understanding between the companies in 2022 to collaborate on quantum computing capabilities and applications in the energy sector. In 2023, Aramco's Wa'ed Ventures also participated in Pasqal's Series B fundraising round.

Link:
Aramco signs agreement with Pasqal to deploy first quantum computer in the Kingdom of Saudi Arabia - Aramco

Exploring new frontiers with Fujitsu’s quantum computing research and development – Fujitsu

Fujitsu and RIKEN have already successfully developed a 64-qubit superconducting quantum computer at the RIKEN-RQC-Fujitsu Collaboration Center, which was jointly established by the two organizations (*1). Our interviewee, researcher Shingo Tokunaga, is currently participating in a joint research project with RIKEN. He majored in electronic engineering at university and worked on microwave-related research topics. After joining Fujitsu, he worked in a variety of software fields, including network firmware development as well as platform development for communication robots. Currently, he is applying his past experience in the Quantum Hardware Team at the Quantum Laboratory to embark on new challenges.

In what fields do you think quantum computing can be applied to?

ShingoQuantum computing has many potential applications, such as finance and healthcare, but especially in quantum chemistry calculations used in drug development. If we can use it for these calculations, we can realize efficient and high precision simulations in a short period of time. Complex calculations that traditionally take a long time to solve on conventional computers are expected to be solved quickly by quantum computers. One such example of this is finding solutions for combinatorial optimization problems such as molecular structure patterns. The spread of the novel coronavirus has made the development of vaccines and therapeutics urgent, and in such situations where rapid responses are needed, I believe the time will come when quantum computers can be utilized.

Fujitsu is collaborating with world-leading research institutions to advance research and development in all technology areas, from quantum devices to foundational software and applications, with the aim of realizing practical quantum computers. Additionally, we are also advancing the development of hybrid technologies (*2) for quantum computers and high-performance computing technologies, represented by the supercomputer Fugaku, which will be necessary for large-scale calculations until the full practicality of quantum computers is achieved.

What themes are you researching? What are your challenges and goals?

ShingoOne of the achievements of our collaborative research with RIKEN is the construction of a 64-qubit superconducting quantum computer. Superconducting quantum computers operate by manipulating quantum bits on quantum chips cooled to under 20 mK using ultra-low-temperature refrigerators, driving them with microwave signals of around 8 GHz, and reading out the state of the bits. However, since both bit operations and readouts are analog operations, errors are inherent. Our goal is to achieve higher fidelity in the control and readout of quantum bits, providing an environment where quantum algorithms can be executed with high computational accuracy, ultimately solving our customers' challenges.

What role do you play in the team?

ShingoThe Quantum Hardware Team consists of many members responsible for tasks such as designing quantum chips, improving semiconductor manufacturing processes, designing and constructing components inside refrigerators, as well as designing and constructing control devices outside refrigerators. I am responsible for building control devices and controlling quantum bits. While much attention is often given to the development of the main body of quantum computers or quantum chips, by controlling and reading quantum bits with high precision, we can deliver the results of the development team to users, and that's my role.

How do you carry out controlling quantum bits, and in what sequence or process?

ShingoThe first step is the basic evaluation of the quantum chip, followed by calibration for controlling the quantum bits. First, we receive the quantum chip from the manufacturing team and perform performance measurements. To evaluate the chip, it is placed inside the refrigerator, and after closing the cover of the refrigerator, which is multilayered for insulation, the inside is vacuumed and cooling begins. It usually takes about two days to cool from room temperature to 20 mK. In the basic evaluation, we confirm parameters such as the resonance frequency of the quantum bits and coherence time called T1(the time it takes for a qubit to become initialized). Then, we perform calibration for quantum bit operations and readouts. Bit operations and readouts may not always yield the desired results, because there are interactions between the bits. The bit to be controlled may be affected by the neighboring bits, so it is necessary to control based on the overall situation of the bits. Therefore, we investigate why the results did not meet expectations, consult with researchers at RIKEN, and make further efforts to minimize errors.

How do you approach the challenge of insufficient accuracy in bit operations and readouts?

ShingoThere are various approaches we can try, such as improving semiconductor processes, implementing noise reduction measures in control electronics, and changing the method of microwave signal irradiation. Our team conducts studies on the waveform, intensity, phase, and irradiation timing of microwave signals necessary to improve the accuracy of quantum bit control. Initially, we try existing methods described in papers on our quantum chip and then work to improve accuracy further from there.

What other areas do you focus on or innovate in, outside of your main responsibilities? Can you also explain the reasons for this?

ShingoI am actively advancing tasks to contribute to improving the performance of quantum computer hardware further. The performance of the created quantum chip can only be evaluated by cooling it in a refrigerator and conducting measurements. Based on these results, it is important to determine what is needed to improve the performance of quantum computer hardware and provide feedback to the quantum chip design and manufacturing teams.

For Fujitsu, the development of quantum computers marks a first-time challenge. Do you have any concerns?

ShingoI believe that venturing into unknown territories is precisely where the value of a challenge lies, presenting opportunities for new discoveries and growth. Fujitsu is tackling quantum computer research and development by combining various technologies it has cultivated over the years. I aim to address challenges one by one and work towards achieving stable operation. Once stable operation is achieved, I hope to conduct research on new control methods.

What kind of activities you are undertaking to accelerate your research on quantum computers?

ShingoQuantum computing is an unknown field even for myself, so I am advancing development while consulting with researchers at RIKEN, our collaborative research partner. I aim to build a relationship of give and take, so I actively strive to cooperate if there are ways in which I can contribute to RIKEN's research.

What is your outlook for future research?

ShingoUltimately, our goal is to utilize quantum computers to solve societal issues, but quantum computing is still in its early stages of development. I believe that it is the responsibility of our Quantum Hardware Team urgently to provide application development teams with qubits and quantum gates that have many bits and high fidelity. In particular, fidelity improvement in two-qubit gate operations is a challenge in the field of control, and I aim to work on improving it. Additionally, I want to explore the development of a quantum platform that allows customers to maximize their utilization of quantum computers.

We use technology to make peoples lives happier. As a result of this belief, we have created various technologies and contributed to the development of society and our customers. At the Fujitsu Technology Hall located in the Fujitsu Technology Park, you can visit mock-ups of Fujitsu's quantum computers, as well as experience the latest technologies such as AI.

Mock-up of a quantum computer exhibited at the Fujitsu Technology Hall

See original here:
Exploring new frontiers with Fujitsu's quantum computing research and development - Fujitsu

Glimpse of next-generation internet – Harvard Office of Technology Development

May 20th, 2024

By Anne Manning, Harvard Staff Writer Published in the Harvard Gazette

An up close photo of the diamond silicon vacancy center.

Its one thing to dream up a next-generation quantum internet capable of sending highly complex, hacker-proof information around the world at ultra-fast speeds. Its quite another to physically show its possible.

Thats exactly what Harvard physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the worlds longest fiber distance between two quantum memory nodes. Think of it as a simple, closed internet carrying a signal encoded not by classical bits like the existing internet, but by perfectly secure, individual particles of light.

The groundbreaking work, published in Nature, was led by Mikhail Lukin, the Joshua and Beth Friedman University Professor in the Department of Physics, in collaboration with Harvard professors Marko Lonar and Hongkun Park, who are all members of the Harvard Quantum Initiative. The Nature work was carried out with researchers at Amazon Web Services.

The Harvard team established the practical makings of the first quantum internet by entangling two quantum memory nodes separated by optical fiber link deployed over a roughly 22-mile loop through Cambridge, Somerville, Watertown, and Boston. The two nodes were located a floor apart in Harvards Laboratory for Integrated Science and Engineering.

Showing that quantum network nodes can be entangled in the real-world environment of a very busy urban area is an important step toward practical networking between quantum computers.

Mikhail Lukin, the Joshua and Beth Friedman University Professor in the Department of Physics

Quantum memory, analogous to classical computer memory, is an important component of a quantum computing future because it allows for complex network operations and information storage and retrieval. While other quantum networks have been created in the past, the Harvard teams is the longest fiber network between devices that can store, process, and move information.

Each node is a very small quantum computer, made out of a sliver of diamond that has a defect in its atomic structure called a silicon-vacancy center. Inside the diamond, carved structures smaller than a hundredth the width of a human hair enhance the interaction between the silicon-vacancy center and light.

The silicon-vacancy center contains two qubits, or bits of quantum information: one in the form of an electron spin used for communication, and the other in a longer-lived nuclear spin used as a memory qubit to store entanglement, the quantum-mechanical property that allows information to be perfectly correlated across any distance.

(In classical computing, information is stored and transmitted as a series of discrete binary signals, say on/off, that form a kind of decision tree. Quantum computing is more fluid, as information can exist in stages between on and off, and is stored and transferred as shifting patterns of particle movement across two entangled points.)

Map showing path of two-node quantum network through Boston and Cambridge. Credit: Can Knaut via OpenStreetMap

Using silicon-vacancy centers as quantum memory devices for single photons has been a multiyear research program at Harvard. The technology solves a major problem in the theorized quantum internet: signal loss that cant be boosted in traditional ways.

A quantum network cannot use standard optical-fiber signal repeaters because simple copying of quantum information as discrete bits is impossible making the information secure, but also very hard to transport over long distances.

Silicon-vacancy-center-based network nodes can catch, store, and entangle bits of quantum information while correcting for signal loss. After cooling the nodes to close to absolute zero, light is sent through the first node and, by nature of the silicon vacancy centers atomic structure, becomes entangled with it, so able to carry the information.

Since the light is already entangled with the first node, it can transfer this entanglement to the second node, explained first author Can Knaut, a Kenneth C. Griffin Graduate School of Arts and Sciences student in Lukins lab. We call this photon-mediated entanglement.

Over the last several years, the researchers have leased optical fiber from a company in Boston to run their experiments, fitting their demonstration network on top of the existing fiber to indicate that creating a quantum internet with similar network lines would be possible.

Showing that quantum network nodes can be entangled in the real-world environment of a very busy urban area is an important step toward practical networking between quantum computers, Lukin said.

A two-node quantum network is only the beginning. The researchers are working diligently to extend the performance of their network by adding nodes and experimenting with more networking protocols.

The paper is titled Entanglement of Nanophotonic Quantum Memory Nodes in a Telecom Network. The work was supported by the AWS Center for Quantum Networkings research alliance with the Harvard Quantum Initiative, the National Science Foundation, the Center for Ultracold Atoms (an NSF Physics Frontiers Center), the Center for Quantum Networks (an NSF Engineering Research Center), the Air Force Office of Scientific Research, and other sources.

Harvard Office of Technology Development enabled the strategic alliance between Harvard University and Amazon Web Services (AWS) to advance fundamental research and innovation in quantum networking.

Tags: Alliances, Collaborations, Quantum Physics, Internet, Publication

Press Contact: Kirsten Mabry | (617) 495-4157

Read more:
Glimpse of next-generation internet - Harvard Office of Technology Development

The quantum internet is fast becoming a real thing – RedShark News

Researchers at Harvard University have demonstrated the longest distance fibre transmission between quantum nodes to date, highlighting that the idea of a quantum internet isn't just fanciful thinking.

Transmitting quantum information between nodes is not a new idea, and it has been demonstrated before. However, performing the feat over a long distance via fibre has always been a stumbling block, due to the degradation of the light signal. Most demonstrations of the concepts of a quantum internet have taken place in laboratories using line of site lasers to create the entangled photons.

Maintaining a state of entanglement over a distance has always been a stumbling block. Entanglement is when two subatomic particles are linked, with a change in one being instantly reflected in the other, even if they are separated by billions of light years. Albert Einstein referred to this phenomena as "spooky action at a distance." When it comes to a quantum internet, the idea is that two qubits (the quantum version of a traditional computer bit) become 'linked'. Once this happens, any change in quantum state of one qubit is instantly reflected in the other, even if they are vast distances apart on a network.

Unfortunately, it is all too easy for an entangled information transmission system to degrade, due to all sorts of reasons, from interference from the outside world to the degradation and scattering of photons. And, unlike traditional ways of transmitting data, quantum information can't be 'boosted' with the use of repeaters.

However, now researchers have managed to show how the transmission of quantum information over long distances is in fact possible in a real-world setting using already existing fibre networks. These latest demonstrations of the potential of transmitting information via entangled photons were performed by three separate research teams, based in the United States, China and the Netherlands, and utilised existing fibre optic networks, with the information being transmitted over several kilometres in busy urban areas. And, while this doesn't mean that we're going to be using a quantum internet any time soon, the experiments represent a gigantic step forward in terms of making such a network a reality.

According to Nature, the experiments were made possible by using photons in the infra-red area of the spectrum, making them more friendly to optical fibre. However, each of the three teams differed in the type of quantum memory device that they used.

The Chinese team, lead by Pan Jian-Wei at the University of Science and Technology of China (USTC), utilised three separate quantum memory sites at separate labs, which used the collective states of clouds of rubidium atoms in which to encode the qubit quantum states. According to Nature, "The qubits quantum states can be set using a single photon, or can be read out by tickling the atomic cloud to emit a photon."

The three labs were connected via an optical fibre network to a separate photonic server located around 10km distance away. Because the experiment relied on the photons from at least two of the atom clouds to reach the server at the same time to produce entanglement, the timing required needed to be incredibly precise, thus reducing the practicality of such a system.

The Dutch team's experiment also relied on precise timing, but instead of rubidium atoms they utilised individual nitrogen atoms embedded in small diamond crystals. The qubits were encoded in the electron states of the nitrogen and in the nuclear states of nearby carbon atoms.Importantly, the team performed the experiment over a 25km run of optical fibre, which serves as considerable proof that the transmission of quantum information in a real world setting is possible.

Finally, the US team used two nodes within the same building, but the fibre network they used made its way over long distances throughout the Boston area, apparently crossing the Charles River six times. Unlike the other two teams, the US method required less precision in the timing by sending one photon to entangle itself with a silicon atom at the first node. This photon made its way around the fibre loop, grazing the second silicon atom on arrival, entangling it with the first one.

Okay, so why would we want to do this? Simply put, transmitting quantum information is highly secure, and effectively 'hacker proof'. Another possibility that has been put forward is the idea of connecting several quantum computers together over distance, effectively creating one large computer. Quantum sensor networks are another potential use, enabling high precision measurements, such as highly accurate timekeeping, more precise navigation systems, measurements of gravitational fields, magnetic fields, and other physical phenomena.

On a more 'real-world' playing field that could affect the average internet user, cloud computing could be made totally secure. It's pretty much impossible to intercept the transmission of quantum information without it being detected. AI learning and processing could also be drastically improved with faster training times, improved algorithms, and new ways to tackle data analysis and pattern recognition.

The use of a quantum network could also help improve the overall efficiency of the internet itself, with new protocols and quantum-enhanced algorithms being developed.

Now, it does sometimes seem as if anything to do with quantum computing is a bit like the promise of new battery technology; it never seems to actually arrive in a practical way. But, the experiments above represent one of the most major brick walls to creating a quantum internet being broken down.

References: Nature, Science Daily

Tags: Technology Internet Quantum Computing

Read the original:
The quantum internet is fast becoming a real thing - RedShark News