Archive for the ‘Machine Learning’ Category

What are the top AI platforms? – Gigabit Magazine – Technology News, Magazine and Website

Business Overview

Microsoft AI is a platform used to develop AI solutions in conversational AI, machine learning, data sciences, robotics, IoT, and more.

Microsoft AI prides itself on driving innovation through; protecting wildlife, better brewing, feeding the world and preserving history.

Its Cognitive Services is described as a comprehensive family of AI services and cognitive APIs to help you build intelligent apps.

Executives

Tom Bernard Krake is the Azure Cloud Executive at Microsoft, responsible for leveraging and evaluating the Azure platform. Tom is joined by a team of experienced executives to optimise the Azure platform and oversee the many cognitive services that it provides.

Notable customers

Uber uses Cognitive Services to boost its security through facial recognition to ensure that the driver using the app matches the user that is on file.

KPMG helps financial institutions save millions in compliance costs through the use of Microsofts Cognitive Services. They do this through transcribing and logging thousands of hours of calls, reducing compliance costs by as much as 80 per cent.

Jet.com uses Cognitive Services to provide answers to its customers by infusing its customer chatbot with the intelligence to communicate using natural language.

The services:

Decision - Make smarter decisions faster through anomaly detectors, content moderators and personalizers.

Language - Extract meaning from unstructured text through the immersive reader, language understanding, Q&A maker, text analytics and translator text.

Speech - Integrate speech processing into apps and services through Speech-to-text, Text to speech, Speech translation and Speaker recognition.

Vision - Identify and analyse content within images, videos and digital ink through computer vision, custom vision, face, form recogniser, ink recogniser and video indexer.

Web Search -Find what you are looking for through the world-wide-web through autosuggest, custom search, entity search, image search, news search, spell check, video search, visual search and web search.

Read more:
What are the top AI platforms? - Gigabit Magazine - Technology News, Magazine and Website

With Launch of COVID-19 Data Hub, The White House Issues A ‘Call To Action’ For AI Researchers – Machine Learning Times – machine learning & data…

Originally published in TechCrunch, March 16, 2020

In a briefing on Monday, research leaders across tech, academia and the government joined the White House to announce an open data set full of scientific literature on the novel coronavirus. The COVID-19 Open Research Dataset, known as CORD-19, will also add relevant new research moving forward, compiling it into one centralized hub. The new data set is machine readable, making it easily parsed for machine learning purposes a key advantage according to researchers involved in the ambitious project.

In a press conference, U.S. CTO Michael Kratsios called the new data set the most extensive collection of machine readable coronavirus literature to date. Kratsios characterized the project as a call to action for the AI community, which can employ machine learning techniques to surface unique insights in the body of data. To come up with guidance for researchers combing through the data, the National Academies of Sciences, Engineering, and Medicine collaborated with the World Health Organization to come up with high priority questions about the coronavirus related to genetics, incubation, treatment, symptoms and prevention.

The partnership, announced today by the White House Office of Science and Technology Policy, brings together the Chan Zuckerberg Initiative, Microsoft Research, the Allen Institute for Artificial Intelligence, the National Institutes of Healths National Library of Medicine, Georgetown Universitys Center for Security and Emerging Technology, Cold Spring Harbor Laboratory and the Kaggle AI platform, owned by Google.

The database brings together nearly 30,000 scientific articles about the virus known as SARS-CoV-2. as well as related viruses in the broader coronavirus group. Around half of those articles make the full text available. Critically, the database will include pre-publication research from resources like medRxiv and bioRxiv, open access archives for pre-print health sciences and biology research.

To continue reading this article, click here.

Read the original:
With Launch of COVID-19 Data Hub, The White House Issues A 'Call To Action' For AI Researchers - Machine Learning Times - machine learning & data...

AI Is Changing Work and Leaders Need to Adapt – Harvard Business Review

Executive Summary

Recent empirical research by the MIT-IBM Watson AI Lab provides new insight into how work is changing in the face of AI. Based on this research, the author provides a roadmap for leaders intent on adapting their workforces and reallocating capital, while also delivering profitability. They argue that the key to unlocking the productivity potential while delivering on business objectives lies in three key strategies: rebalancing resources, investing in workforce reskilling and, on a larger scale, advancing new models of education and lifelong learning.

As AI is increasingly incorporated into our workplaces and daily lives, it is poised to fundamentally upend the way we live and work. Concern over this looming shift is widespread. A recent survey of 5,700 Harvard Business School alumni found that 52% of even this elite group believe the typical company will employ fewer workers three years from now.

The advent of AI poses new and unique challenges for business leaders. They must continue to deliver financial performance, while simultaneously making significant investments in hiring, workforce training, and new technologies that support productivity and growth. These seemingly competing business objectives can make for difficult, often agonizing, leadership decisions.

Against this backdrop, recent empirical research by our team at the MIT-IBM Watson AI Lab provides new insight into how work is changing in the face of AI. By examining these findings, we can create a roadmap for leaders intent on adapting their workforces and reallocating capital, while also delivering profitability.

The stakes are high. AI is an entirely new kind of technology, one that has the ability to anticipate future needs and provide recommendations to its users. For business leaders, that unique capability has the potential to increase employee productivity by taking on administrative tasks, providing better pricing recommendations to sellers, and streamlining recruitment, to name a few examples.

For business leaders navigating the AI workforce transition, the key to unlocking the productivity potential while delivering on business objectives lies in three key strategies: rebalancing resources, investing in workforce reskilling and, on a larger scale, advancing new models of education and lifelong learning.

Our research report, offers a window into how AI will change workplaces through the rebalancing and restructuring of occupations. Using AI and machine learning techniques, our MIT-IBM Watson AI Lab team analyzed 170 million online job posts between 2010 and 2017. The studys first implication: While occupations change slowly over years and even decades tasks become reorganized at a much faster pace.

Jobs are a collection of tasks. As workers take on jobs in various professions and industries, it is the tasks they perform that create value. With the advancement of technology, some existing tasks will be replaced by AI and machine learning. But our research shows that only 2.5% of jobs include a high proportion of tasks suitable for machine learning. These include positions like usher, lobby attendant, and ticket taker, where the main tasks involve verifying credentials and allowing only authorized people to enter a restricted space.

Most tasks will still be best performed by humans whether craft workers like plumbers, electricians and carpenters, or those who do design or analysis requiring industry knowledge. And new tasks will emerge that require workers to exercise new skills.

As this shift occurs, business leaders will need to reallocate capital accordingly. Broad adoption of AI may require additional research and development spending. Training and reskilling employees will very likely require temporarily removing workers from revenue-generating activities.

More broadly, salaries and other forms of employee compensation will need to reflect the shifting value of tasks all along the organization chart. Our research shows that as technology reduces the cost of some tasks because they can be done in part by AI, the value workers bring to the remaining tasks increases. Those tasks tend to require grounding in intellectual skill and insightsomething AI isnt as good at as people.

In high-wage business and finance occupations, for example, compensation for tasks requiring industry knowledge increased by more than $6,000, on average, between 2010 and 2017. By contrast, average compensation for manufacturing and production tasks fell by more than $5,000 during that period. As AI continues to reshape the workplace, business leaders who are mindful of this shifting calculus will come out ahead.

Companies today are held accountable not only for delivering shareholder value, but for positively impacting stakeholders such as customers, suppliers, communities and employees. Moreover, investment in talent and other stakeholders is increasingly considered essential to delivering long-term financial results. These new expectations are reflected in the Business Roundtables recently revised statement on corporate governance, which underscores corporations obligation to support employees through training and education that help develop new skills for a rapidly changing world.

Millions of workers will need to be retrained or reskilled as a result of AI over the next three years, according to a recent IBM Institute for Business Value study. Technical training will certainly be a necessary component. As tasks requiring intellectual skill, insight and other uniquely human attributes rise in value, executives and managers will also need to focus on preparing workers for the future by fostering and growing people skills such as judgement, creativity and the ability to communicate effectively. Through such efforts, leaders can help their employees make the shift to partnering with intelligent machines as tasks transform and change in value.

As AI continues to scale within businesses and across industries, it is incumbent upon innovators and business leaders to understand not only the business process implications, but also the societal impact. Beyond the need for investment in reskilling within organizations today, executives should work alongside policymakers and other public and private stakeholders to provide support for education and job training, encouraging investment in training and reskilling programs for all workers.

Our research shows that technology can disproportionately impact the demand and earning potential for mid-wage workers, causing a squeeze on the middle class. For every five tasks that shifted out of mid-wage jobs, we found, four tasks moved to low-wage jobs and one moved to a high-wage job. As a result, wages are rising faster in the low- and high-wage tiers than in the mid-wage tier.

New models of education and pathways to continuous learning can help address the growing skills gap, providing members of the middle class, as well as students and a broad array of mid-career professionals, with opportunities to build in-demand skills. Investment in all forms of education is key: community college, online learning, apprenticeships, or programs like P-TECH, a public-private partnership designed to prepare high school students for new collar technical jobs like cloud computing and cybersecurity.

Whether it is workers who are asked to transform their skills and ways of working, or leaders who must rethink everything from resource allocation to workforce training, fundamental economic shifts are never easy. But if AI is to fulfill its promise of improving our work lives and raising living standards, senior leaders must be ready to embrace the challenges ahead.

Go here to see the original:
AI Is Changing Work and Leaders Need to Adapt - Harvard Business Review

Skill up for the digital future with India’s #1 Machine Learning Lab and AI Research Center – YourStory

In recent years, Artificial Intelligence (AI) has offered industries tremendous potential for making production more efficient, flexible and reliable. Industries across various domains are now looking to apply AI. In fact, a recent report by Infosys, which surveyed 1,000 senior IT and business decision-makers in companies across seven countries, found that more than half of these companies had already invested in deep-learning AI algorithms.

Every tech professional today, irrespective of their role in the organisation, needs to be AI/ML-ready to compete in the new world order. In keeping with the current and future demand for professionals with expertise in AI and Machine Learning (ML), and to help build a holistic understanding of the subject, IIIT Hyderabad, in association with TalentSprint, an ed-tech platform, is offering an AI/ML Executive Certification Program for working professionals in India and abroad.

The programme is designed for working professionals in a 13-week format that involves masterclass lectures, hands-on labs, mentorship, hackathons, and workshops to ensure fast-track learning. The programme is conducted in Hyderabad to enable a wider audience to benefit from the expertise of IIIT Hyderabads Machine Learning Lab.

The programme has successfully completed 11 cohorts with 2200+ participants who are currently working with more than 600 top companies.

You can apply for the 14th cohort here

Participants will get access to in-person classes every weekend. This enables professionals from in and around Hyderabad to build AI/ML expertise from Indias top Machine Learning Lab at IIIT Hyderabad.

With a balanced mix of lectures and labs, the programme will also host hackathons, group labs, and workshops. Participants will also get assistance from mentors throughout the programme. The programmes Hackathons, Group Labs, and Workshops also enable participants to work in teams of exceptional peer groups. Moreover, the lectures are delivered by world class faculty and industry experts.

Refresh your knowledge on coding and the mathematics necessary for building expertise in AI/ML

Learn to translate real-world problems into AI/ML abstractions

Learn about and apply standard AI/ML algorithms to create AI/ML applications

Implement practical solutions using Deep Learning Techniques and Toolchains

Participate in industry projects and hackathons

While there are a number of courses on offer in this domain, what makes this AI/ML Executive Certification Program stand out is the fact that it is offered by India's No. 1 Machine Learning Lab at IIIT Hyderabad. The programme follows a unique 5-step learning process to ensure fast-track learning: Masterclass Lectures, Hands-on Labs, Mentorship, Hackathons and Workshops. Moreover, participants also get a chance to learn and collaborate with leading people from academia, industry and global bluechip Institutions.

The institute has been the torch bearer of research for several years. It hosts the Kohli Center (KCIS), India's leading center on intelligent systems. KCIS's research was featured in 600 publications and has received 5,792 citations in academic publications. It also hosts the Center for Visual Information Technology (CVIT) that focuses on basic and advanced research in Image Processing Computer Vision, Computer Graphics and Machine Learning

Tech professionals with at least one year work experience and coding background are encouraged to apply. The programme is especially beneficial for business leaders, CXOs, project managers/developers, analysts and developers. Applications for the 14th cohort are closing on March 20. Apply today!

See more here:
Skill up for the digital future with India's #1 Machine Learning Lab and AI Research Center - YourStory

Doing machine learning the right way – MIT News

The work of MIT computer scientist Aleksander Madry is fueled by one core mission: doing machine learning the right way.

Madrys research centers largely on making machine learning a type of artificial intelligence more accurate, efficient, and robust against errors. In his classroom and beyond, he also worries about questions of ethical computing, as we approach an age where artificial intelligence will have great impact on many sectors of society.

I want society to truly embrace machine learning, says Madry, a recently tenured professor in the Department of Electrical Engineering and Computer Science. To do that, we need to figure out how to train models that people can use safely, reliably, and in a way that they understand.

Interestingly, his work with machine learning dates back only a couple of years, to shortly after he joined MIT in 2015. In that time, his research group has published several critical papers demonstrating that certain models can be easily tricked to produce inaccurate results and showing how to make them more robust.

In the end, he aims to make each models decisions more interpretable by humans, so researchers can peer inside to see where things went awry. At the same time, he wants to enable nonexperts to deploy the improved models in the real world for, say, helping diagnose disease or control driverless cars.

Its not just about trying to crack open the machine-learning black box. I want to open it up, see how it works, and pack it back up, so people can use it without needing to understand whats going on inside, he says.

For the love of algorithms

Madry was born in Wroclaw, Poland, where he attended the University of Wroclaw as an undergraduate in the mid-2000s. While he harbored interest in computer science and physics, I actually never thought Id become a scientist, he says.

An avid video gamer, Madry initially enrolled in the computer science program with intentions of programming his own games. But in joining friends in a few classes in theoretical computer science and, in particular, theory of algorithms, he fell in love with the material. Algorithm theory aims to find efficient optimization procedures for solving computational problems, which requires tackling difficult mathematical questions. I realized I enjoy thinking deeply about something and trying to figure it out, says Madry, who wound up double-majoring in physics and computer science.

When it came to delving deeper into algorithms in graduate school, he went to his first choice: MIT. Here, he worked under both Michel X. Goemans, who was a major figure in applied math and algorithm optimization, and Jonathan A. Kelner, who had just arrived to MIT as a junior faculty working in that field. For his PhD dissertation, Madry developed algorithms that solved a number of longstanding problems in graph algorithms, earning the 2011 George M. Sprowls Doctoral Dissertation Award for the best MIT doctoral thesis in computer science.

After his PhD, Madry spent a year as a postdoc at Microsoft Research New England, before teaching for three years at the Swiss Federal Institute of Technology Lausanne which Madry calls the Swiss version of MIT. But his alma mater kept calling him back: MIT has the thrilling energy I was missing. Its in my DNA.

Getting adversarial

Shortly after joining MIT, Madry found himself swept up in a novel science: machine learning. In particular, he focused on understanding the re-emerging paradigm of deep learning. Thats an artificial-intelligence application that uses multiple computing layers to extract high-level features from raw input such as using pixel-level data to classify images. MITs campus was, at the time, buzzing with new innovations in the domain.

But that begged the question: Was machine learning all hype or solid science? It seemed to work, but no one actually understood how and why, Madry says.

Answering that question set his group on a long journey, running experiment after experiment on deep-learning models to understand the underlying principles. A major milestone in this journey was an influential paper they published in 2018, developing a methodology for making machine-learning models more resistant to adversarial examples. Adversarial examples are slight perturbations to input data that are imperceptible to humans such as changing the color of one pixel in an image but cause a model to make inaccurate predictions. They illuminate a major shortcoming of existing machine-learning tools.

Continuing this line of work, Madrys group showed that the existence of these mysterious adversarial examples may contribute to how machine-learning models make decisions. In particular, models designed to differentiate images of, say, cats and dogs, make decisions based on features that do not align with how humans make classifications. Simply changing these features can make the model consistently misclassify cats as dogs, without changing anything in the image thats really meaningful to humans.

Results indicated some models which may be used to, say, identify abnormalities in medical images or help autonomous cars identify objects in the road arent exactly up to snuff. People often think these models are superhuman, but they didnt actually solve the classification problem we intend them to solve, Madry says. And their complete vulnerability to adversarial examples was a manifestation of that fact. That was an eye-opening finding.

Thats why Madry seeks to make machine-learning models more interpretable to humans. New models hes developed show how much certain pixels in images the system is trained on can influence the systems predictions. Researchers can then tweak the models to focus on pixels clusters more closely correlated with identifiable features such as detecting an animals snout, ears, and tail. In the end, that will help make the models more humanlike or superhumanlike in their decisions. To further this work, Madry and his colleagues recently founded the MIT Center for Deployable Machine Learning, a collaborative research effort within the MIT Quest for Intelligence that is working toward building machine-learning tools ready for real-world deployment.

We want machine learning not just as a toy, but as something you can use in, say, an autonomous car, or health care. Right now, we dont understand enough to have sufficient confidence in it for those critical applications, Madry says.

Shaping education and policy

Madry views artificial intelligence and decision making (AI+D is one of the three new academic units in the Department of Electrical Engineering and Computer Science) as the interface of computing thats going to have the biggest impact on society.

In that regard, he makes sure to expose his students to the human aspect of computing. In part, that means considering consequences of what theyre building. Often, he says, students will be overly ambitious in creating new technologies, but they havent thought through potential ramifications on individuals and society. Building something cool isnt a good enough reason to build something, Madry says. Its about thinking about not if we can build something, but if we should build something.

Madry has also been engaging in conversations about laws and policies to help regulate machine learning. A point of these discussions, he says, is to better understand the costs and benefits of unleashing machine-learning technologies on society.

Sometimes we overestimate the power of machine learning, thinking it will be our salvation. Sometimes we underestimate the cost it may have on society, Madry says. To do machine learning right, theres still a lot still left to figure out.

See the rest here:
Doing machine learning the right way - MIT News