Archive for the ‘Machine Learning’ Category

Do Machine Learning and AI Go Hand-in-Hand in Digital Transformation? – Techiexpert.com – TechiExpert.com

The measure of data put away by banks is quickly expanding and gives a chance to banks to lead prescient examinations and improve their organizations. In any case, data researchers are confronting significant difficulties, dealing with the considerable measure of data effectively, and producing bits of data with genuine business esteem.

Various advanced procedures and internet-based life trades produce data trails. Frameworks, sensors, and cell phones transmit data. Big data is touching base from different sources with disturbing speed, volume, and assortment. Consistently 2.5 quintillion bytes of data are made, and 90% of the data on the planet today was delivered inside the previous two years.

In this significant data period, the measure of data put away by any bank is quick extending, and the idea of the data has turned out to be increasingly unpredictable. These patterns give a gigantic chance to a bank to upgrade its organizations. Generally, banks have attempted to extricate data from an example of its inside data and delivered occasional reports to improve future essential leadership. These days, with the accessibility of immense measures of standardized and unstructured data from both inside and outside sources. There is expanded weight and spotlight on getting an endeavor perspective on the client efficiently. This further empowers a bank to direct significant scale client experience investigation and addition more profound bits of data for clients, channels, and the whole showcase.

With the advancement of new financial administrations, banks databases are developing to adjust to business needs. Subsequently, these databases have turned out to be incredibly mind-boggling. Since customarily organized data is spared in tables, there is much open door for expanded intricacy. For instance, another table in a database is included for another business or another database replaces the past one for a business framework update. Besides the internal data sources, there are standardized data from outside sources like financial, statistic, and geographic data. To guarantee the consistency and precision of the data, a standard data arrangement is characterized by organized data.

The development of unstructured data makes a much higher multifaceted nature. While some unstructured data can start from inside a bank, including web log documents, call records, and video replays, increasingly more can be gotten from outside sources, for example, internet based life data from Twitter**, Facebook**, and WeChat. The unstructured data is usually put away as records as opposed to database tables. A great many documents with tens or several terabytes of data can be successfully overseen on the BigInsights stage. this is an Apache Hadoop-based, equipment freethinker programming stage that gives better approaches for utilizing different and big-scale data accumulations alongside implicit explanatory capacities

Since unstructured data isnt sorted out in a well-characterized way, extra work must be done to move the data into a regularized or schematized structure before displaying it. The IBM SPSS Analytic Server (AS) gives big data investigation capacities, including incorporated help for unstructured prescient examination from the Hadoop condition. It very well may be utilized to draw legitimately and inquiry the data put away in BigInsights, dispensing with the need to move data and empowering ideal execution on a lot of data. Using apparatuses given by AS, strategies for normalizing unstructured data can be planned and actualized on a standard calendar without composing complex code and contents.

Indeed, even organized data needs extra data planning to improve the data quality on BigInsights with Big SQL (Structured Query Language), which is, an apparatus given by BigInsights as a blend of a SQL interface and parallel preparing for taking care of big data. It very well may be utilized to deal with insufficient, erroneous, or insignificant data effectively. Besides, some factual techniques are executed using Big SQL to lessen the effect of the clamor in the data. For instance, a few data nonsensical qualities are recognized and dispensed with; a few highlights are standardized or positioned. Along these lines, some exceptionally suspected anomalies are controlled from impeding the investigation. This progression helps separate signs from the commotion in significant data examination.

When every one of the data has been arranged and purified, a data combination procedure is directed on BigInsights. Data from numerous sources are consolidated, and the coordinated data is put away in a data stockroom, in which the connections between tables are well-characterized. The data clashes because of heterogeneous sources are settled. Each full join between meals with a great many occurrences should be possible on BigInsights in minutes, which for the most part, takes hours without the parallel processing procedure. Given the data stockroom, many traits can be related to every client, and a united undertaking client view is produced.

1. Customer division and inclination examination: This module delivers fine-grained client divisions in which clients share similar inclination for various sub-branches or market locales. Because of these outcomes, banks can get further bits of data in their client qualities and preferences, to improve consumer loyalty and accomplish exactness advertising by customizing banking items and administrations, just as showcasing messages. This is one of the most significant advantages of big data analytics in banking sector.

2. Potential client distinguishing proof: This module enables banks to recognize potential high-income or steadfast clients who are probably going to wind up beneficial to the bank. However, we are at present, not clients. With this strategy, banks can get an increasingly complete and exact objective client list for high-esteem clients, which can improve showcasing productivity and carry tremendous benefits to the banks.

3. Customer system investigation: By getting client and item proclivity through an examination of internet-based life systems, the client organizes inquiry can improve client maintenance, strategically pitch, and up-sell.

4. Market potential examination: Using financial, statistic, and geographic data, this module creates spatial conveyance for both existing clients and potential clients. With the market potential conveyance map, banks can have an unmistakable diagram of the objective clients areas. To distinguish the client from concentrating/lacking territories for contributing/stripping, which will bolster the banks client promoting and investigation.

5. Channel assignment and activity streamlining: Based on the banks system and spatial conveyance of client assets, this module improves the arrangement (i.e., area, type) and tasks of administration channels (i.e., retail bank or computerized/automated teller machine). Expanding income, consumer loyalty, and reach against expenses can improve client maintenance and draw in new clients.

Business data (BI) devices are fit for recognizing potential dangers related to cash loaning forms in banks. With the assistance of big data examination, banks can dissect the market inclines and choose to bring down or to expand loan fees for various people crosswise over different locales.

Data section blunders from manual structures can be decreased to a base as extensive data bring up peculiarities in client data as well.

With misrepresentation recognition calculations, clients who have poor FICO ratings can be distinguished, so banks dont advance cash to them. One more big application in banking is restricting the rates of deceitful or questionable exchanges that could improve the enemy of social exercises or psychological warfare.

big data examination can help banks in understanding client conduct dependent on the sources of info obtained from their speculation designs, shopping patterns, inspiration to contribute, and individual or money related foundations. This data assumes an urgent job in winning client unwaveringly by planning customized banking answers for them. This prompts a cooperative connection between banks and clients. Altered financial arrangements can extraordinarily expand lead age as well.

A more significant part of bank representatives guarantee that guaranteeing banking administrations meet all the administrative consistence criteria set by the Government 68% of bank workers state that their greatest worry in banking administrations is

BI instruments can help break down and monitor all the administrative prerequisites by experiencing every individual application from the clients for exact approval.

With execution examination, worker execution can be evaluated whether they have accomplished the month to month/quarterly/yearly targets. Because of the figures obtained from current offers of workers, significant data examination can decide approaches to enable them to scale better. Notwithstanding banking administrations overall can be checked to recognize what works and what doesnt.

Banks client assistance focuses will have a ton of requests and criticism age all the time. Indeed, even web-based social networking stages fill in as a sounding board for client encounters today. Big Data apparatuses can help in filtering through high volumes of data and react to every one of them sufficiently and quickly. Clients who feel that their banks esteem their input immediately will stay faithful to the brand.

At last, banks that dont advance and ride the big data wave wont just get left behind yet additionally become outdated. Receiving Big Data investigation and other howdy tech instruments to change the existing financial segment will assume a big job in deciding the lifespan of banks in the digital age.

The financial segment has consistently been moderately delayed to improve: 92 of the best 100 world driving banks still depend on IBM centralized servers in their tasks. No big surprise fintech appropriation is so high. Contrasted with the client inspired and nimble new businesses, customary budgetary establishments stand zero chance.

Be that as it may, with regards to big data, things deteriorate: most heritage frameworks cant adapt to the outstanding developing burden. Attempting to gather, store, and dissect the required measures of data utilizing an obsolete framework can put the strength of your whole structure in danger.

Thus, associations face the test of developing their preparing limits or totally re-assembling their frameworks to respond to the call.

Besides, where theres data, theres a hazard (particularly considering the heritage issue weve referenced previously). Unmistakably banking suppliers need to ensure the client data they aggregate and procedure stays safe consistently.

However, just 38% of associations worldwide are prepared to deal with the danger, as per ISACA International. That is the reason cybersecurity stays one of the most consuming issues in banking.

Furthermore, data security guidelines are getting stringent. The presentation of GDPR has put certain limitations on organizations worldwide that need to gather and apply clients data. This ought to likewise be considered.

With such big numbers of various types of data in banking and its total volume, its nothing unexpected that organizations battle to adapt to it. This turns out to be much progressively evident when attempting to isolate the useful data from the pointless.

While the portion of possibly valuable data is developing, there is still a lot of unimportant data to deal with. This implies organizations need to plan themselves and reinforce their techniques for breaking down much more data. If conceivable, locate another application for the data that has been viewed as unimportant.

In spite of the referenced difficulties, the upsides of big data in banking effectively legitimize any dangers. The bits of data it gives you the assets it opens up, the cash it spares. Data is an all-inclusive fuel that can move your business to the top.

The rest is here:
Do Machine Learning and AI Go Hand-in-Hand in Digital Transformation? - Techiexpert.com - TechiExpert.com

How Machine Learning Will Impact the Future of Software Development and Testing – ReadWrite

Machine learning (ML) and artificial intelligence (AI) are frequently imagined to be the gateways to a futuristic world in which robots interact with us like people and computers can become smarter than humans in every way. But of course, machine learning is already being employed in millions of applications around the worldand its already starting to shape how we live and work, often in ways that go unseen. And while these technologies have been likened to destructive bots or blamed for artificial panic-induction, they are helping in vast ways from software to biotech.

Some of the sexier applications of machine learning are in emerging technologies like self-driving cars; thanks to ML, automated driving software can not only self-improve through millions of simulations, it can also adapt on the fly if faced with new circumstances while driving. But ML is possibly even more important in fields like software testing, which are universally employed and used for millions of other technologies.

So how exactly does machine learning affect the world of software development and testing, and what does the future of these interactions look like?

A Briefer on Machine Learning and Artificial Intelligence

First, lets explain the difference between ML and AI, since these technologies are related, but often confused with each other. Machine learning refers to a system of algorithms that are designed to help a computer improve automatically through the course of experience. In other words, through machine learning, a function (like facial recognition, or driving, or speech-to-text) can get better and better through ongoing testing and refinement; to the outside observer, the system looks like its learning.

AI is considered an intelligence demonstrated by a machine, and it often uses ML as its foundation. Its possible to have a ML system without demonstrating AI, but its hard to have AI without ML.

The Importance of Software Testing

Now, lets take a look at software testinga crucial element of the software development process, and arguably, the most important. Software testing is designed to make sure the product is functioning as intended, and in most cases, its a process that plays out many times over the course of development, before the product is actually finished.

Through software testing, you can proactively identify bugs and other flaws before they become a real problem, and correct them. You can also evaluate a products capacity, using tests to evaluate its speed and performance under a variety of different situations. Ultimately, this results in a better, more reliable productand lower maintenance costs over the products lifetime.

Attempting to deliver a software product without complete testing would be akin to building a large structure devoid of a true foundation. In fact, it is estimated that the cost of post software delivery can 4-5x the overall cost of the project itself when proper testing has not been fully implemented. When it comes to software development, failing to test is failing to plan.

How Machine Learning Is Reshaping Software Testing

Here, we can combine the two. How is machine learning reshaping the world of software development and testing for the better?

The simple answer is that ML is already being used by software testers to automate and improve the testing process. Its typically used in combination with the agile methodology, which puts an emphasis on continuous delivery and incremental, iterative developmentrather than building an entire product all at once. Its one of the reasons, I have argued that the future of agile and scrum methodologies involve a great deal of machine learning and artificial intelligence.

Machine learning can improve software testing in many ways:

While cognitive computing holds the promise of further automating a mundane, but hugely important process, difficulties remain. We are nowhere near the level of process automation acuity required for full-blown automation. Even in todays best software testing environments, machine learning aids in batch processing bundled code-sets, allowing for testing and resolving issues with large data without the need to decouple, except in instances when errors occur. And, even when errors do occur, the structured ML will alert the user who can mark the issue for future machine or human amendments and continue its automated testing processes.

Already, ML-based software testing is improving consistency, reducing errors, saving time, and all the while, lowering costs. As it becomes more advanced, its going to reshape the field of software testing in new and even more innovative ways. But, the critical piece there is going to. While we are not yet there, we expect the next decade will continue to improve how software developers iterate toward a finished process in record time. Its only one reason the future of software development will not be nearly as custom as it once was.

Nate Nead is the CEO of SEO.co/; a full-service SEO company and DEV.co/; a custom web and software development business. For over a decade Nate had provided strategic guidance on technology and marketing solutions for some of the most well-known online brands. He and his team advise Fortune 500 and SMB clients on software, development and online marketing. Nate and his team are based in Seattle, Washington and West Palm Beach, Florida.

Here is the original post:
How Machine Learning Will Impact the Future of Software Development and Testing - ReadWrite

Machine Learning in Retail Market Size is set to Grow at a Remarkable Pace in the Coming Years – Apsters News

TheMachine Learning in Retail Marketreport is one of the most comprehensive and important data about business strategies, qualitative and quantitative analysis of Global Market. It offers detailed research and analysis of key aspects of the Machine Learning in Retail market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the Machine Learning in Retail market.

Global Machine Learning in Retail Market is presented to the readers as a holistic snapshot of the competitive landscape within the given forecast period. It presents a comparative detailed analysis of the all regional and player segments, offering readers a better knowledge of where areas in which they can place their existing resources and gauging the priority of a particular region in order to boost their standing in the global market.

Request a sample of this premium research @:https://www.bigmarketresearch.com/request-sample/3618857?utm_source=Geeta-AN

Top Key Players Present in Global Machine Learning in Retail Market Are:IBM, Microsoft, Amazon Web Services, Oracle, SAP, Intel, NVIDIA, Google, Sentient Technologies, Salesforce, ViSenze

Different leading key players have been profiled in this research report to get a clear idea of successful strategies carried out by top-level companies. On the basis of geographical segmentation, the global Machine Learning in Retail Market has been fragmented across several regions such asNorth America, Latin America, Asia-Pacific, Africa, and Europe.This Market research report highlights those leading players who are planning to expand opportunities in the global market.

The Machine Learning in Retail Market research report presents a comprehensive assessment of the market and contains thoughtful insights, facts, historical data and statistically-supported and industry-validated market data and projections with a suitable set of assumptions and methodology. It provides analysis and information by categories such as market segments, regions, and product type and distribution channels.

The Global Machine Learning in Retail Market is gaining pace and businesses have started understanding the benefits of analytics in the present day highly dynamic business environment. The market has witnessed several important developments over the past few years, with mounting volumes of business data and the shift from traditional data analysis platforms to self-service business analytics being some of the most prominent ones.

By ApplicationApplication A, Application B, Application C

By Products:Cloud Based, On-Premises

For the future period, sound forecasts on market value and volume are offered for each type and application. In the same period, the report also provides a detailed analysis of market value and consumption for each region. These insights are helpful in devising strategies for the future and take necessary steps. New project investment feasibility analysis and SWOT analysis are offered along with insights on industry barriers. Research findings and conclusions are mentioned at the end.

Reasons for Buying This Report:

Request a Discount on standard prices of this premium research @:https://www.bigmarketresearch.com/request-for-discount/3618857?utm_source=Geeta-AN

Table of Content

Chapter 1Industry Overview

Chapter 2Major Segmentation (Classification, Application and etc.) Analysis

Chapter 3Production Market Analysis

Chapter 4Sales Market Analysis

Chapter 5Consumption Market Analysis

Chapter 6Production, Sales and Consumption Market Comparison Analysis

Chapter 7Major Manufacturers Production and Sales Market Comparison Analysis

Chapter 8Marketing Channel Analysis

Chapter 9Industry Chain Analysis

Chapter 10Global and Regional Market Forecast

Chapter 11Major Manufacturers Analysis

Chapter 12New Project Investment Feasibility Analysis

About Us:

Big Market Research has a range of research reports from various publishers across the world. Our database of reports of various market categories and sub-categories would help to find the exact report you may be looking for.

We are instrumental in providing quantitative and qualitative insights on your area of interest by bringing reports from various publishers at one place to save your time and money. A lot of organizations across the world are gaining profits and great benefits from information gained through reports sourced by us.

Contact us:

Mr. Abhishek Paliwal

5933 NE Win Sivers Drive, #205, Portland,

OR 97220 United States

Direct: +1-971-202-1575

Toll Free: +1-800-910-6452

E-mail:[emailprotected]

Go here to read the rest:
Machine Learning in Retail Market Size is set to Grow at a Remarkable Pace in the Coming Years - Apsters News

These 2 books will strengthen your command of Python machine learning – The Next Web

Mastering machine learning is not easy, even if youre a crack programmer. Ive seen many people come from a solid background of writing software in different domains (gaming, web, multimedia, etc.) thinking that addingmachine learningto their roster of skills is another walk in the park. Its not. And every single one of them has been dismayed.

I see two reasons for why the challenges of machine learning are misunderstood. First, as the name suggests, machine learning is software that learns by itself as opposed tobeing instructed on every single rule by a developer. This is an oversimplification that many media outlets with little or no knowledge of the actual challenges of writing machine learning algorithms often use when speaking of the ML trade.

[Read:How the Dutch government uses data to predict the weather and prepare for natural disasters]

The second reason, in my opinion, are the many books and courses that promise to teach you the ins and outs of machine learning in a few hundred pages (and the ads on YouTube that promise to net you a machine learning job if you pass an online course). Now, I dont what to vilify any of those books and courses. Ivereviewed severalof them(and will review some more in the coming weeks), and I think theyre invaluable sources for becoming a good machine learning developer.

But theyre not enough. Machine learning requires both good coding and math skills and a deep understanding of various types of algorithms. If youre doing Python machine learning, you have to have in-depth knowledge of many libraries and also master the many programming and memory-management techniques of the language. And, contrary to what some people say, you cant escape the math.

And all of that cant be summed up in a few hundred pages. Rather than a single volume, the complete guide to machine learning would probably look like Donald Knuths famousThe Art of Computer Programmingseries.

So, what is all this tirade for? In my exploration of data science and machine learning, Im always on the lookout for books that take a deep dive into topics that are skimmed over by the more general, all-encompassing books.

In this post, Ill look atPython for Data AnalysisandPractical Statistics for Data Scientists, two books that will help deepen your command of the coding and math skills required to master Python machine learning and data science.

Python for Data Analysis, 2nd Edition,is written by Wes McKinney, the creator of the pandas, one of key libraries using in Python machine learning. Doing machine learning in Python involves loading and preprocessing data in pandas before feeding them to your models.

InPython for Data Analysis, McKinney takes you through the entire functionality of pandas and manages to do so without making it read like a reference manual. There are lots of interesting examples that build on top of each other and help you understand how the different functions of pandas tie in with each other. Youll go in-depth on things such as cleaning, joining, and visualizing data sets, topics that are usually only discussed briefly in most machine learning books.Most books and courses on machine learning provide an introduction to the main pandas components such as DataFrames and Series and some of the key functions such as loading data from CSV files and cleaning rows with missing data. But the power of pandas is much broader and deeper than what you see in a chapters worth of code samples in most books.

Youll also get to explore some very important challenges, such as memory management and code optimization, which can become a big deal when youre handling very large data sets in machine learning (which you often do).

What I also like about the book is the finesse that has gone into choosing subjects to fit in the 500 pages. While most of the book is about pandas, McKinney has taken great care to complement it with material about other important Python libraries and topics. Youll get a good overview of array-oriented programming with numpy, another important Python library often used in machine learning in concert with pandas, and some important techniques in using Jupyter Notebooks, the tool of choice for many data scientists.

All this said, dont expectPython for Data Analysisto be a very fun book. It can get boring because it just discusses working with data (which happens to be the most boring part of machine learning). There wont be any end-to-end examples where youll get to see the result of training and using a machine learning algorithm or integrating your models in real applications.

My recommendation:You should probably pick upPython for Data Analysisafter going through one of theintroductory or advanced books on data scienceor machine learning. Having that introductory background on working with Python machine learning libraries will help you better grasp the techniques introduced in the book.

WhilePython for Data Analysisimproves your data-processing and -manipulation coding skills, the second book well look at,Practical Statistics for Data Scientists, 2nd Edition,will be the perfect resource to deepen your understanding of the core mathematical logic behind many key algorithms and concepts that you often deal with when doing data science and machine learning.

But again, the key here is specialization.The book starts with simple concepts such as different types of data, means and medians, standard deviations, and percentiles. Then it gradually takes you through more advanced concepts such as different types of distributions, sampling strategies, and significance testing. These are all concepts you have probably learned in math class or read about in data science and machine learning books.

On the one hand, the depth thatPractical Statistics for Data Scientistsbrings to each of these topics is greater than youll find in machine learning books. On the other hand, every topic is introduced along with coding examples in Python and R, which makes it more suitable than classic statistics textbooks on statistics. Moreover, the authors have done a great job of disambiguating the way different terms are used in data science and other fields. Each topic is accompanied by a box that provides all the different synonyms for popular terms.

As you go deeper into the book, youll dive into the mathematics of machine learning algorithms such as linear and logistic regression, K-nearest neighbors, trees and forests, and K-means clustering. In each case, like the rest of the book, theres more focus on whats happening under the algorithms hood rather than using it for applications. But the authors have again made sure the chapters dont read like classic math textbooks and the formulas and equations are accompanied by nice coding examples.

LikePython for Data Analysis,Practical Statistics for Data Scientistscan get a bit boring if you read it end to end. There are no exciting applications or a continuous process where you build your code through the chapters. But on the other hand, the book has been structured in a way that you can read any of the sections independently without the need to go through previous chapters.

My recommendation:ReadPractical Statistics for Data Scientistsafter going through an introductory book on data science and machine learning. I definitely recommend reading the entire book once, though to make it more enjoyable, go topic by topic in-between your exploration of other machine learning courses. Also keep it handy. Youll probably revisit some of the chapters from time to time.

I would definitely countPython for Data AnalysisandPractical Statistics for Data Scientistsas two must-reads for anyone who is on the path of learning data science and machine learning. Although they might not be as exciting as some of the more practical books, youll appreciate the depth they add to your coding and math skills.

This article was originally published by Ben Dickson on TechTalks, a publication that examines trends in technology, how they affect the way we live and do business, and the problems they solve. But we also discuss the evil side of technology, the darker implications of new tech and what we need to look out for. You can read the original article here.

Published July 8, 2020 09:49 UTC

Here is the original post:
These 2 books will strengthen your command of Python machine learning - The Next Web

The value of context and meaning: Virtual care’s transformative potential for patient insights – ModernHealthcare.com

Machine learning is critical to effective and scalable virtual care; allowing clinicians to simultaneously improve outcomes and reduce the cost of care.

With the proliferation of sensors and wearables in the home setting, a new host of data is now available for clinicians. And yet, no human can feasibly and economically make sense of this deluge of data. Enter machine learning, which according to Nature, is already showing significant promise augmenting clinicians ability to treat Type II Diabetes, analyze skin lesions, and electrocardiograms. According to Accenture, machine learning will save $150 Billion a year in healthcare costs by 2026.

And yet, todays care model, as is perpetuated by telehealth providers, struggles to adapt and learn from each patient interaction as any learned knowledge that can benefit a population, is effectively lost when clinicians press end call after each session.

Machine learning will unlock clinicians' ability to deliver personalized care at population scale.

Effectively bridging a capacity gap, machine learning is critical to understanding the deluge of data coming from multivariate sensors in the patients home.

Enabling clinicians to scale personalized care to thousands of patients, machine learning will not only allow clinicians to practice top of license it will also foster a learning system that gets smarter with each patient interaction.

Underpinning this opportunity must be an emphasis on transparency and accountability into the drivers of recommendations coming from any machine learning system.

More here:
The value of context and meaning: Virtual care's transformative potential for patient insights - ModernHealthcare.com