Archive for the ‘Artificial Intelligence’ Category

There is already a beer created by Artificial Intelligence – Thehour.com

There is already a beer created by Artificial Intelligence

Technology has become a large part of our lives and with it Artificial Intelligence (AI) has intruded into our daily lives, so much so that with the help of it we have been able to create products that man normally makes.

In this context, a Swiss company launched Deeper, the first beer in the European country created with the assistance of AI. The recipe for the drink was made by the algorithm known as Brauer AI.

Photo: brauer.ai

To carry out this project, the creators chose the type of Indian Pale Ale beer, subsequently the algorithm analyzed market trends and an international database with around 157 thousand recipes to choose the type of malt and hops to use.

The MN Brew microbrewery, the University of Lucerne and the Jaywalker Digital company participated in the creation of this product. On the official page of the drink, the little legend explains "we believe in the power of merging human wisdom with artificial intelligence."

Related:

See the rest here:
There is already a beer created by Artificial Intelligence - Thehour.com

Are we being played by Artificial Intelligence? – The Times of India Blog

Can an algorithm know more about you, your choices and intentions than you do yourself?

It was only by the time he turned 21 that Yuval Noah Harari understood he was gay. When questioned about a new algorithm that can decipher whether someone is gay or straight, based on a few facial images, the celebrated thought leader acknowledges that increasingly algorithms know more about us than we ourselves can possibly do.

Using his own example, he says hypothetically if an algorithm available with Coca Cola had deciphered that he was gay even before he knew it, they could have served up ads with photos of a shirtless man, while Pepsi (if unaware of his sexuality), may have sent him ads with women in bikinis. As a result, he would automatically veer towards Coke. This is how a corporate can manipulate our choices insidiously and sell us anything product or politician without our even being aware of it!

Scary thought, isnt it? The recent documentary The Social Dilemma has brought to the fore fears of privacy violation, polarization, and spread of fake news and communal tensions through internet companies. This is driven by their profit model, which thrives on extremely focused target advertising based on personal information gleaned from our internet usage.

Be it your shopping, music, food, reading or movie choices, by collecting all the right biometric data, companies can hit you with the right emotional message at the right time.

The greater danger is that most of this works at a subliminal level, such as the hypothetical Coke example above, where we are influenced at a subconscious level without even realizing it. When you know the danger of being influenced, you can work against that, but what happens when you do not even realise you are being manipulated? Subliminal messages work at the level of the subconscious advertisers flash a message for a period shorter than the conscious mind can catch, or one too subtle for it!

But the same algorithms that pick up our biometric details can also be used to benefit us. Yuval talks of a health algorithm that could constantly monitor the body without our being aware of it. It could help us deal with health issues well in time. Or, an algorithm that predicts markets in time for you to make profitable decisions. Or, one that understands your sadness, and plays a song that will uplift your mood!

The subconscious is privy to information that we know nothing of. That is why sometimes we just know something without being able to explain why or how, and we call it instinct. Ultimately however, whatever AI uses will come from us we are indeed being played by machines!

All these years we have been told to tap into that vast unknown within us and unleash our power. While humanity is still engaged in an attempt to do so, what if now technology is doing that to benefit others and to insidiously manipulate us and our choices with secret sales pitches? As with all else, hopefully humanity will ultimately tread the fine line between the advantages and disadvantages. Do we need an AI code of morality?

A double-edged sword indeed!

DISCLAIMER : Views expressed above are the author's own.

Read the rest here:
Are we being played by Artificial Intelligence? - The Times of India Blog

9 Soft Skills Every Employee Will Need In The Age Of Artificial Intelligence (AI) – Forbes

Technical skills and data literacy are obviously important in this age of AI, big data, and automation. But that doesn't mean we should ignore the human side of work skills in areas that robots can't do so well. I believe these softer skills will become even more critical for success as the nature of work evolves, and as machines take on more of the easily automated aspects of work. In other words, the work of humans is going to become altogether more, well, human.

9 Soft Skills Every Employee Will Need In The Age Of Artificial Intelligence (AI)

With this in mind, what skills should employees be looking to cultivate going forward? Here are nine soft skills that I think are going to become even more precious to employers in the future.

1. Creativity

Robots and machines can do many things, but they struggle to compete with humans when it comes to our ability to create, imagine, invent, and dream. With all the new technology coming our way, the workplaces of the future will require new ways of thinking making creative thinking and human creativity an important asset.

2. Analytical (critical) thinking

As well as creative thinking, the ability to think analytically will be all the more precious, particularly as we navigate the changing nature of the workplace and the changing division of labor between humans and machines. That's because people with critical thinking skills can come up with innovative ideas, solve complex problems and weigh up the pros and cons of various solutions all using logic and reasoning, rather than relying on gut instinct or emotion.

3. Emotional intelligence

Also known as EQ (as in, emotional IQ), emotional intelligence describes a person's ability to be aware of, control, and express their own emotions and be aware of the emotions of others. So when we talk about someone who shows empathy and works well with others, were describing someone with a high EQ. Given that machines cant easily replicate humans ability to connect with other humans, it makes sense that those with high EQs will be in even greater demand in the workplace.

4. Interpersonal communication skills

Related to EQ, the ability to successfully exchange information between people will be a vital skill, meaning employees must hone their ability to communicate effectively with other people using the right tone of voice and body language in order to deliver their message clearly.

5. Active learning with a growth mindset

Someone with a growth mindset understands that their abilities can be developed and that building skills leads to higher achievement. They're willing to take on new challenges, learn from their mistakes, and actively seek to expand their knowledge. Such people will be much in demand in the workplace of the future because, thanks to AI and other rapidly advancing technologies, skills will become outdated even faster than they do today.

6. Judgement and decision making

We already know that computers are capable of processing information better than the human brain, but ultimately, it's humans who are responsible for making the business-critical decisions in an organization. It's humans who have to take into account the implications of their decisions in terms of the business and the people who work in it. Decision-making skills will, therefore, remain important. But there's no doubt that the nature of human decision making will evolve specifically, technology will take care of more menial and mundane decisions, leaving humans to focus on higher-level, more complex decisions.

7. Leadership skills

The workplaces of the future will look quite different from today's hierarchical organizations. Project-based teams, remote teams, and fluid organizational structures will probably become more commonplace. But that won't diminish the importance of good leadership. Even within project teams, individuals will still need to take on leadership roles to tackle issues and develop solutions so common leadership traits like being inspiring and helping others become the best versions of themselves will remain critical.

8. Diversity and cultural intelligence

Workplaces are becoming more diverse and open, so employees will need to be able to respect, understand, and adapt to others who might have different ways of perceiving the world. This will obviously improve how people interact within the company, but I think it will also make the businesss services and products more inclusive, too.

9. Embracing change

Even for me, the pace of change right now is startling, particularly when it comes to AI. This means people will have to be agile and cultivate the ability to embrace and even celebrate change. Employees will need to be flexible and adapt to shifting workplaces, expectations, and required skillsets. And, crucially, they'll need to see change not as a burden but as an opportunity to grow.

Bottom line: we needn't be intimated by AI. The human brain is incredible. It's far more complex and more powerful than any AI in existence. So rather than fearing AI and automation and the changes this will bring to workplaces, we should all be looking to harness our unique human capabilities and cultivate these softer skills skills that will become all the more important for the future of work.

AI is going to impact businesses of all shapes and sizes across all industries. Discover how to prepare your organization for an AI-driven world in my new book, The Intelligence Revolution: Transforming Your Business With AI.

Read the rest here:
9 Soft Skills Every Employee Will Need In The Age Of Artificial Intelligence (AI) - Forbes

Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19 – DocWire News

This article was originally published here

Eur Respir Rev. 2020 Oct 1;29(157):200181. doi: 10.1183/16000617.0181-2020. Print 2020 Sep 30.

ABSTRACT

Artificial intelligence (AI) is transforming healthcare delivery. The digital revolution in medicine and healthcare information is prompting a staggering growth of data intertwined with elements from many digital sources such as genomics, medical imaging and electronic health records. Such massive growth has sparked the development of an increasing number of AI-based applications that can be deployed in clinical practice. Pulmonary specialists who are familiar with the principles of AI and its applications will be empowered and prepared to seize future practice and research opportunities. The goal of this review is to provide pulmonary specialists and other readers with information pertinent to the use of AI in pulmonary medicine. First, we describe the concept of AI and some of the requisites of machine learning and deep learning. Next, we review some of the literature relevant to the use of computer vision in medical imaging, predictive modelling with machine learning, and the use of AI for battling the novel severe acute respiratory syndrome-coronavirus-2 pandemic. We close our review with a discussion of limitations and challenges pertaining to the further incorporation of AI into clinical pulmonary practice.

PMID:33004526 | DOI:10.1183/16000617.0181-2020

View post:
Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19 - DocWire News

Artificial Intelligence in Operation Monitoring Discovers Patterns Within Drilling Reports – Journal of Petroleum Technology

Artificial Intelligence in Operation Monitoring Discovers Patterns Within Drilling Reports

You have access to this full article to experience the outstanding content available to SPE members and JPT subscribers.

To ensure continued access to JPT's content, please Sign In, JOIN SPE, or Subscribe to JPT

In well-drilling activities, successful execution of a sequence of operations defined in a well project is critical. To provide proper monitoring, operations executed during drilling procedures are reported in daily drilling reports (DDRs). The complete paper provides an approach using machine-learning and sequence-mining algorithms for predicting and classifying the next operation based on textual descriptions. The general goal is to exploit the rich source of information represented by the DDRs to derive methodologies and tools capable of performing automatic data-analysis procedures and assisting human operators in time-consuming tasks.

Classification Tasks. fastText. This is a library discussed in the literature designed to learn word embeddings and text classification. The technique implements a simple linear model with rank constraint, and the text representation is a hidden state that is used to feed classifiers. A softmax function computes the probability distribution over predefined classes.

Conditional Random Fields (CRFs). CRFs are a category of undirected graphical models that allow combination of features from each timestep of the sequence, with the ability to transit between labels for each episode in the input sequence. They were proposed to overcome the problem of bias that existed in techniques such as hidden Markov models and maximum-entropy Markov models.

Recurrent Models. Despite achieving good results in several scenarios and learning word embeddings as a byproduct of its training, the fastText classifier does not properly consider word-ordering information that can be useful for several classification tasks. Such a shortcoming can be addressed by a recurrent neural network (RNN), which considers the fact that a fragment of text is formed by an ordered sequence of words. The authors consider the gated recurrent unit variant, which is easier to train than traditional RNNs and achieves results comparable with those of the long short-term memory unit, while figuring fewer parameters to learn. The methodology of these classifiers is detailed mathematically in the complete paper.

Sequence Prediction. Sequential pattern mining can be defined broadly by the task of discovering interesting subsequences in a set of sequences, where the level of interest can be measured in terms of various criteria such as occurrence frequency, length, and profit, according to the application. The authors focus in this paper on the specific task of sequence prediction.

In the scenario considered, the alphabet is given by an ontology of operations of drilling activities. The sequence is defined according to data stored in DDRs. The proposed methodology considers various sequence prediction algorithms, specifically the following:

These algorithms are detailed in the complete paper. The sequential pattern mining framework (SPMF) was used for algorithm implementation. SPMF is an open-source data-mining library specialized in frequent pattern mining.

Data Sets. The data sets used for the experiments reported in this paper were extracted from different collections of DDRs. Each DDR entry is a record containing a rich set of information about the event being reported, which could be an operation or an occurrence. Two different types of data sets were generated, the operations data sets and the cost data set. The former is used by both classification and sequence prediction tasks, whereas the latter is only used for classification.

Operations Data Sets. The operations data sets were extracted from DDRs of 119 different wellbores, which comprise more than 90,000 entries. The DDR fields of most interest for the experiments applied on this collection are the description and the operation name. The former is a special field used by the reporter to fill in important details about the event in a free-text format. The latter is selected by the reporter from a predefined list of operation names.

For the sequence-mining tasks, only the operation name is used. The data set is viewed as a set of sequences of operations, one for each wellbore. For the classification tasks, both fields are used for supervised learning, with the description as input object and the operation name as label.

The DDRs were preprocessed by an industry specialist with the objective of, first, removing the inconsistencies and, second, normalizing operation names to unify operations that shared semantics. Given the large number of documents, the strategy used for the former objective was to remove entries with the wrong operation name (instead of fixing each one, which would be a much harder task). As for the second objective, after an analysis of the list of operation names and samples of descriptions, each group of overlapping operations was transformed into a single operation.

This process yielded a resulting data set containing more than 38,000 samples and 39 operation types for the classification task and another containing more than 51,000 samples and 41 operations types for the sequence-prediction task.

Costs Data Sets. The costs data set is a collection of DDRs with an extra field (the target field) meant to be used for calculating the cost of each operation performed in a wellbore project. That field usually is multivalued because more than one activity of interest being described might exist in the free-text field of a DDR entry. Each value in that list is a pair containing two types of information: a label for the activity described in the entry and a number pointing to a diameter value.

As opposed to the operations data set, the target field was filled on land by a small group of employees trained specifically for this task. Nevertheless, the costs data set still had to be preprocessed before use in the experiments.

Classification Results. Before evaluating the models, the best values for each hyperparameter are determined using the validation set through a grid search. The proposed models are trained for 30 epochs.

The experimental results regarding accuracy and macro-F1 measures for the costs and operations data sets are presented in the complete paper. In both cases, the fastText classifier, despite being quite simple, yields significant results, posing a strong baseline for the proposed models. Nevertheless, one should recall that the word vectors learned by this first classifier are used as the proposed model embeddings as well.

The other neural networks also consider the complete word ordering in the samples, allowing them to achieve results better than the baseline. Such metrics are further improved by replacing the traditional Softmax layer in the output layer by a CRF. This allows the model to label each entry in the segment not only based on its extracted characteristics but also with respect to the operations ordering. This allows the model to improve the baseline accuracy by 10.94 and 3.85% in the cost and operations data sets, respectively. The proposed model learns not only the most relevant characteristics from each sample but also the patterns in the sequence of operations performed in a well-drilling project.

Sequence-Mining Results. The data set was divided into 10 segments, and the methods were evaluated according to a cross-validation protocol. The cross-validation protocol varies the training and testing data through various executions in order to reduce any bias in the results. For the classification tasks, approaches based on word embeddings and CRFs are exploited. Evaluations were made considering sequences from size 5 to 10 in the data set, using the sequence-prediction methods to predict the next drilling operation.

Table 1 presents the accuracy obtained when considering the sequences of operations as presented in the data set. Table2 shows the accuracy obtained when removing consecutive drilling operations from the data. The data set contains multiple repetitions of operations, contiguous to one another. This makes the data more predictable to the sequence prediction model and explains the higher accuracy obtained in experiments shown in Table 1.

DDR Processing Framework. To make the models discussed available for use in a real-world scenario, a framework is proposed that allows the end user to upload DDRs and analyze them by different applications, one for each specific purpose. One great advantage of using this framework is that the user feeds data once and then has access to several tools for analyzing them.

Currently, a working version of an application for performing the classification tasks already has been implemented. It encapsulates the classification models generated with the experiments and allows the processing of a large number of DDRs, either for operation or cost classification.

Read more:
Artificial Intelligence in Operation Monitoring Discovers Patterns Within Drilling Reports - Journal of Petroleum Technology