Archive for February, 2021

Carin Meier Using Machine Learning to Combat Major Illness, such as the Coronavirus – InfoQ.com

00:22 Introduction

00:22 Wes Reisz: Worldwide, there have been 96 million cases of the coronavirus, with over 2 million deaths attributed to the disease. In particular, places like the US, India, and Brazil have been some of the hardest areas hit. In the US alone, 400,000 people have been attributed as dying from this disease, roughly the same number of American soldiers that died in World War II. Today, I thought we'd talk about how tech is combating major diseases--such as the coronavirus. While the coronavirus certainly has our attention, it won't be the sole focus of what we talk a bit about today. We'll talk about things like cancer and heart disease. We'll also talk about some of the challenges when working with private health care data and some of the techniques and things that still need to be solved when dealing with this type of data, things like safety and ethics. We'll be talking about ways of using this data in a responsible and effective way.

01:08 Wes Reisz: Hello and welcome to the InfoQueue podcast. I'm Wes Reisz, one of the hosts for the podcast. Today's guest is Carin Meier. Carin is a data engineer at Reify Health. Reify Health develops software that accelerates the development of new and lifesaving therapies. Carin is an avid functional developer. She's a committer, PPMC member for Apache MXNet, and you've seen her keynote at places like OSCon, Strangeloop, and most recently at QCon Plus (held towards the end of last year).

01:34 Wes Reisz: The next QCon plus, which is an online version of the QCon you know and love, will be taking place over two weeks between May 17th and 28 of 2021. QCon Plus focuses on emerging software trends and practices from the world's most innovative software shops. All 16 tracks are curated by domain experts to help you focus on the topics that matter the most in software today. Tracks include leading full-cycle engineering teams, modern data pipelines, and continuous delivery: workflows and platforms. You'll learn new ideas. You'll learn new insights from over 80 software practitioners and innovator/early adopter companies, all across software. Spaced over two weeks, just a few hours a day, these expert-level technical talks provide real time interactive sessions, regular sessions, async learning, and additional workshops to help you validate your software roadmap. If you're a senior software engineer, architect or team lead and want to take your technical learning and personal development to a whole new level this year, join us at QCon plus this May 17th to 28th. You can visit qcon.plus for more info.

02:34 Wes Reisz: With that, let's jump in. Carin, thank you for joining us on the podcast.

02:37 Carin Meier: Thank you for having me. I'm excited to be here.

02:40 Wes Reisz: Yeah. I'm excited to work this out. I thought we jumped right in and start with Apache MXNet. It seems like a good way to bridge right into this topic. As way of an introduction, you're committer PPMC on the project. What is it? What is the MXNet?

02:53 Carin Meier: Yeah, so Apache MXNet is a machine learning library, and we're all very familiar with that. The thing that I really enjoy about it is that it's an Apache model. I was able to come there as just an interested party wanting to use this and realizing there was a gap. There were no Clojure bindings as a language for the library. I was able to get involved and commit and contribute that binding so I could bring the Clojure community to it. Then also help cross-pollinate ideas between the functional communities and the regular view Python developers. Just regularly, I think that the Apache model is a great one for openness across not only different programming languages but across different cultures and different nations in the world. I think it's a great place.

03:47 Wes Reisz: There's a bunch of deep learning libraries, for example, out there. What is Apache MXNet's focus?

03:52 Carin Meier: It's incubating, so it's not fully graduated. I'll put that in there. That's something that you've always got to say until you graduate that you're incubating Apache. The focus is ... It's a full-fledged machine learning library. You can do deep neural networks with it, but it really focuses on being efficient and fast, as opposed to some of the other ones.

04:13 Wes Reisz: On this podcast, I wanted to see how tech in particular ML and AI is affecting and just being involved with the fight against the coronavirus. That was the original premise. What are you seeing in the machine learning space as ways that the disease is being combated?

04:30 Carin Meier: Yeah, everybody knows where we are in the pandemic. It's like a big spotlight has been shown on this area. I think it's to great effect that we've seen great strides with the Google AlphaFold and just many people using machine learning to generate possible solutions that we've come up with with our vaccines, which is fantastic. Also, in all the little supporting ways. There's been machine learning applied to just about every other way that you can accelerate, looking at the results of the trials and results, using machine learning to sift through papers, to find possible correlations between symptoms and bring stuff to the forefront that we couldn't discover in any sort of timely fashion. Then of course, you think about the machine learning and just every other supporting way. Amazon could still ship my things to me, even though the whole supply chain had been disrupted. There's ways that we can definitely point to we have a vaccine now, but just everything that's supporting that and accelerating us. How Zoom was able to scale, how schools were able to be able to move to online learning.

05:47 Carin Meier: All of that has been accelerated in ways that we just can't count by these techniques and our technology today.

05:55 Wes Reisz: Talking about Zoom, I was at a friend's, and they have a son. I think he's six years old, and (I was there for just a few minutes, keeping my social distancing, of course) off at the table, I could see him with eight other six-year-olds on the Zoom meeting. It was just the craziest thing to watch a group of six-year-olds doing a reading exercise or a writing exercise on Zoom. It's just amazing how the whole human experience had to change with this pandemic.

06:21 Carin Meier: Yeah. We're in it. Machine learning is around us so much now that it's like water and air.

06:27 Wes Reisz: Yeah, totally. Are there any specific cases? I know you can't mention very specifics, but are there any specific cases that you can point to, that we can talk about?

06:36 Carin Meier: There is a CORD-19 Open Research Dataset that the Semantic Scholar team at the Allen Institute for AI. They developed to partner with the global research community by accelerating finding insights in all the related published papers. That was an interesting one. The one that I'm interested in right now is... We can talk about it later, but it was from Google AI. It's a paper that came out when they're talking about bringing concept-model explanations for Electronic Health Records. Actually, there's been all sorts of ... We'll get into this later about how to make machine learning more trustworthy and reliable, but there's been exciting breakthroughs in that area as well.

07:21 Wes Reisz: I looked at when we were collaborating on some notes, this was one of the ones that was down there, but what is a concept-based model explanation? I went through there and checked a little bit at it, but I guess I didn't quite follow what is exactly meant by concept-based model explanations?

07:36 Carin Meier: I guess they always have abbreviations from this. That's TCAV, and this is out from Google, of course, doing a lot of great research in this area. It's bridging the gap between interpretability. In your traditional models, you'd have this person who has high blood pressure. We could point to all the little factors and then follow them through in a big decision tree. If/then. Here you get the answer at the end. You could really point the way and follow it like a ball through a maze to the end.

08:11 Carin Meier: In these deep learning models, of course, you've just got this huge black box full of billions or trillions of connections. You ask when you get the model out at the end, how could you possibly get to this answer? This approach, as I understand it has these concepts like high blood pressure, being an additional concept vector that's added to the input that then makes it easier to interpret it and be able to follow through those decisions. It's an approach to the interpretability to vectorize it and blended in to almost like a symbolic blend, but people would probably argue with that.

08:55 Wes Reisz: It's using the domain to actually explain the model itself right?

08:59 Carin Meier: Right.

09:01 Wes Reisz: I mentioned in the intro that you work at Reify Health. What are some of the things that you all are doing there?

09:05 Carin Meier: Yeah. Reify Health, we focus on a particular bottleneck to the clinical trial industry. We're all very interested in how fast things get through clinical trials and not only the COVID vaccines but lifesaving cancer therapies for breast cancer, all sorts of horrible diseases. There's potential lifesaving treatments out there. The faster we can get it through clinical trials and understand if they're going to work or not, the better for everybody. Our company works on the particular bottleneck of enrollment. Before you get the trial and try the drugs on the patients, this is actually getting enough people enrolled in the trial.

09:52 Carin Meier: There's a lot of opportunity in speeding up that whole process and making it more effective so you can get the trial actually going. That's where we put all our resources. Right now, our team is building out a data pipeline, which is interesting in itself and the healthcare domain, because you have a lot of data privacy and sensitive information. Then you have of course, different countries involved that have different rules about things. Being able to use that data and route it and protect it and being able to leverage it in an analytical fashion with machine learning ... There's a lot of interesting technical challenges. That's where we are. We're working with accelerating enrollment in this area.

10:39 Wes Reisz: As you were talking a bit about the concept-based model explanations and some of the challenges like regions with data, particularly in cases like things like GDPR, there's a lot of challenges with using data in machine learning--accuracy, safety, ethics, all these kinds of things. I thought we'd shift a bit and talk about some of the challenges that exist in working with this data. Let's start off. You mentioned already explainability. The ability in simple English, rather than just weighted numbers through thousands of ... This Plinko board going through, building a machine learning model, but in a way that you can explain it, maybe not simple English, but the domain of the business, be able to explain how a decision is made. Why is that a problem? Why has that traditionally been a problem with deep learning machine learning?

11:26 Carin Meier: I think it's just the scale. We've got random forests too, that might have this problem as you get to scale as well. I think it's anything where you get beyond somebody being able to sit down and look at a computer programming model or a flow sheet, or however, you want to describe it. Being not able to fully understand how a computer program got to the answer. Certainly with the deep learning models where you've got everything vectorized, you've got nonlinearity flowing through huge parameters and you get to the end, and it says, hey, that's a cat.

12:06 Wes Reisz: The way that I like to always envision it is back in my software experience, I remember building rules engines. Rules engines, you could retrace the path and be able to say because of this decision, we had the next decision, we had the next decision. Those were great and we built them larger and larger and larger. Then all of a sudden convolutional neural networks came along and we could replace this massive rules engine with all these different, again, Plinko boards on how things bounce through the system with something like the convolutional neural network, which was great. It was a lot less code and it was a lot easier to manage from the rules engine, but how it got to that result was lost. The things like what you talked about with explainability with that concept-based model explanation seemed like a way of addressing that. It's not just a nice to have anymore. It's legally required by things like GDPR in the European Union.

13:00 Carin Meier: There's a great conference that goes on every year called NeurIPS. They just had a really great tutorial on interpretability and on these machine learning models. That's actually free out there. I encourage everybody to go out there, especially if you're using machine learning models and interested in this. They went into ... Basically with simple models ... Like you said, with the rules engine, you can trace it through, but once something gets big enough that you can't, you have to move to a post-hoc explainability. You can't trace it from the beginning. You can only look afterward with a percentage. This is why it did what it did. You can see this, they have some nice tools out there, especially with text-based models. When you have a snippet of text and you ask it a question based on that, like who was the President in year X, then it'll light up the highlighted words of how relevant each word was to the answer that it derives. That's post-hoc explainability.

14:03 Carin Meier: You can look afterward and say, this word doesn't look like it's quite right. Then of course you'd have to go through the whole bother of trying to debug it. That's a whole different thing, if you didn't like the answer that it got. It's interesting. If you have that insight into seeing how the model is working, then you can start to address other balances like accuracy and safety. How accurate do you need it to solve your problem? Maybe a machine learning model isn't even worth it to you, if you don't need to be that accurate that you don't need that trade-off. If you do need that accuracy, how can you safely use it? If you have an explanation, can you insert human into the process and have them double-check the answer? I think going down to the core of this, we have wonderful tool machine learning, but it definitely doesn't replace thinking. Thinking just pushes to a broader picture of how can you incorporate this in this process? Do you need to incorporate this in the process? Do you understand your problem? What is your problem? That's the hard stuff.

15:19 Wes Reisz: I like that bit about human and the AI loop because I think a lot of times people think about AI and machine learning is just making all these decisions. Certainly, they do, but in many cases, it's augmenting a human's ability to, I guess, react on data more appropriately. I can remember talking about Stitch Fix, for example. Stitch Fix, it's not in the healthcare space, but it does clothing recommendations for people. There's still an individual there. They use machine learning extensively to give recommended sets of clothes and patterns of things to a person who then makes that final recommendation to the subscriber and the person. I think that's a really good way of thinking about how machine learning and AI is being used. It helps, it augments the person's ability to get to a set of data where the real decision can be made faster, I think.

16:11 Carin Meier: Exactly. I think the analogy earlier on was, we want machine learning to be like an Iron Man suit.

16:19 Wes Reisz: I like that. I like that. Yeah. Let's talk about the Iron Man suit. What are some of the challenges with creating this Iron Man suit? Things like you mentioned, accuracy, safety, you've already talked about explainability. What are some of the core challenges on being able to leverage machine learning, deep learning in this healthcare space?

16:36 Carin Meier: I think those are the key things that are holding us back trust, basically. Healthcare and the medical environment is a high-trust environment. Whatever tools that we use to leverage, we need to understand them and to be able to trust them because they're making deep impact on people's lives. The amount of trust that you need to pick a sweater for a person is not the amount of trust that you need to decide whether a person should get a life-saving treatment or not. Google and other big companies are tackling this problem. We need to find ways that we can make sure that privacy on the individual level is being preserved on these models, that they're explainable in some way that we can trust them, and that we can find best practices. I don't like to say best practices in a lot of ways that we can incorporate them into our businesses and our models.

17:41 Carin Meier: I'll just expand on that. The reason I don't like to say best practices it's because people use that as an excuse not to think. They're just like, I don't need to think about this. The best practice is the way we do it. This is our purpose. Our purpose is to be here and to think about our problems and to think about the trade-offs of every solution, and come to the best possible solution. Just taking an off the box answer and saying, we can use this and not thinking about it is doing a disservice to everyone.

18:09 Wes Reisz: Yeah. It leads us into some of the problems we've heard where ML models have gone wrong, for example. That reminds me of a cartoon I remember seeing years ago about design patterns. It was before a developer hears about design patterns, after a developer hears about it, and then after they have more experience leveraging design patterns. The first one, their code's going all over the place. Then the second one everything's a design pattern. Every single design pattern that they could possibly imagine is implemented end to end. Then at the end of it, it's like, here's just some simpler code that may happen to use a pattern. Once you learn about these things... Oh, I have to try to put them everywhere. It's not always the best approach.

18:45 Carin Meier: Right. I think that's led to some of the problems that we've had with machine learning models lately.

18:51 Wes Reisz: Let's talk about safety. In particular, one in the healthcare space that I think seems like a real challenge. I remember a couple of years ago, a few years back, there was a book by Cathy O'Neil Weapons of Math Destruction, that talk about just systemic bias data and reinforcing pre-existing inequity with machine learning models. That went to things like removing things like race, for example, from data sets, when decisions are being made. In healthcare, race can be very important. People with certain ethical backgrounds may be more inclined to having certain diseases like heart disease, for example, or high blood pressure or things like that. How do you balance privacy, safety with things like race when it comes to machine learning models, when it may be important to the decision, but it's been used for reinforcing pre-existing inequity? How do you balance?

19:44 Carin Meier: I think the first step is recognizing that there is a problem with this, and then you have to approach it carefully. Luckily now, it's been circulated that there is a problem in datasets. Just because you put it all in a model doesn't mean that the answer is perfectly free of human bias because we fed it this data. Data in, data out. It doesn't go away just because it's a machine learning model, that's our core truth. Making sure that your data is a good representative set to begin with is your fundamental thing. Of course, with sensitive data like race and ethnicity, you have the additional thing of this has got individuals' very sensitive data that you need to protect this. This is ways that differential privacy... If people haven't heard of it. It's a technique that you can protect an individual person's information while still gathering statistical insights on the whole. You can still get the core learnings that you need, but without compromising the individual's privacy.

20:53 Wes Reisz: The way that I understand differential privacy and correct me if I'm wrong cause I'm sure it's not accurate, but it's like rather than showing someone in individual, you show it in an aggregated set? That way, the privacy of the individual is respected, but the data is still presented. Is that accurate?

21:08 Carin Meier: It's got more math behind it. I'm not a math expert, but it's statistical fuzzing method I guess, is an appropriate way to think about it. There's also ways that you can use this in training the deep learning models in a distributed fashion as well. That way, the machine learning model is trained on that fuzzed data itself. The individual data never actually reaches the final model, which is an important thing as well. I don't want to get too far down in the differential privacy, but that's another technique that's used to be able to safely extract insights into race and ethnicity. That is an important component to making sure that it is not biased. Again, so then there's another process at the end, evaluating your model. Does your model have any bias in either direction? It's all throughout the process. It's at the beginning, looking at your data coming in, how you actually train the model, how you evaluate the model, and then a circular feedback loop. Let's get humans in it and make sure that it's doing the things that we want it to do in a safe manner.

22:24 Wes Reisz: Tying back to what we were talking about, that human in the AI loop before. I think what I've just heard is it's important for humans to audit the decisions that are coming out to make sure that they make sense. Is that accurate?

22:35 Carin Meier: Yeah. Just like any sort of code. You need to test it to make sure that your code is right. That's at the lower levels of, did it actually get the right answer that you wanted. Is the model accurate? Then the higher level, is it trustworthy? Can you explain how did he get this answer? Why did it say that this person should get this treatment? Then how do we make sure that that isn't biased? That's another question. It goes up and up in scope, and how do we safely incorporate this into our business practice? What happens if it's wrong? I think that's one of the reasons why so many people are attracted to this area because the problems are tough and they're important, and they're changing. A lot of people are attracted to computer science in our industry because we like solving problems, and there's a lot of problems to solve in this domain that directly impact everyone.

23:29 Wes Reisz: We seem only to be creating more problems with our society that have to be solved. We talked about privacy, we talked about explainability, we talked about safety, but one we haven't talked about is ethics. Just because we can doesn't mean we should. What are some of the ethical questions that at the heart of machine learning today, deep learning today?

23:48 Carin Meier: Wow. Yeah.

23:51 Wes Reisz: I don't know how I'd answer that question, so go.

23:55 Carin Meier: I think you ask broad questions, you can get broad answers.

24:00 Wes Reisz: Good response. As soon as I said it, I thought that was an unfair question to ask.

24:04 Carin Meier: The answer is, should we?

24:05 Wes Reisz: It depends. Maybe.

24:09 Carin Meier: That's the thing. There was a good example of it in the news. I think it was in England when the whole pandemic hit and people couldn't take their end exams. I think they just said, let's just put a machine learning model on all your prior test exams, and we'll just predict what you would have gotten on this test.

24:29 Wes Reisz: That's a great idea.

24:32 Carin Meier: It's pretty much the same as what you would have gotten. So what? You can't go to college now.

24:40 Wes Reisz: Yeah. I definitely would not have gone to college under that arrangement.

24:44 Carin Meier: Yes, in that case, you can, and we did, but should we, sort of thing.

24:51 Wes Reisz: Do no harm. I think that's a good answer. That's the best way to end it.

24:55 Carin Meier: I know people at various points, people are always like, "Computer science people should be a guild. We should have an ethics statement just like doctors." It's interesting not even getting into whether we should have a guild, but if we had an ethics statement, like the Hippocratic Oath for doctors, what would it be? What would our oath be?

25:16 Wes Reisz: There's a lot of discipline. There's a lot of fields that are in machine learning. I think that there's a perception that to be involved with these data pipelines that do the work that you're doing requires a PhD to be able to... Is that true? Does it require a PhD to be able to get involved and contribute in a meaningful way to things like deep learning solutions to the coronavirus?

25:38 Carin Meier: I would say definitely not. PhDs are helpful. If you have a PhD, please come and help us, but it's not required. I think data engineering as a field is one of the fastest-growing fields, just because we need good engineers. We need good engineers to build out our pipelines and to apply engineering practice to building models, maintaining them. The whole of our software industry has trained us to do, and we need it applied to this. Also we need just curious people generally to innovate. I think you were saying before about design patterns. Once you learn about design patterns, everything's design patterns until... I think a lot of that is with deep learning and deep learning models right now. We've got one dominant model and one dominant way that we're thinking about intelligence. That's not necessarily the best or the only way. We need more people to come to this with curious minds, bring their backgrounds, whether it's philosophy, whether it's game development, whatever it is, so we, as humanity, can press forward and look at all these different solutions and find the best ones.

26:55 Wes Reisz: Absolutely. I come at it from a web developer background. I'm a Java developer who comes from a web environment. These models still have to run. It still takes someone to be able to take that machine learning model, wrap it into a service and be able to operationalize it into a platform. There's so many roles that are needed to be able to tackle the problems that machine learning can help solve. We're at the very beginning of the year, 2020 is in our rearview mirror, thankfully. What do you hope that we're going to solve in 2021? What do you think are the big things we're set to solve?

27:29 Carin Meier: I'm going to bring it down to the scope of machine learning.

27:32 Wes Reisz: Yeah, there you go. Sorry. Let me qualify that. What are some of the things in the machine learning and deep learning space that you think we're poised to solve in 21?

27:39 Carin Meier: Trust. Building trust in these techniques and in the models so we can use them responsibly and effectively in our healthcare and other areas that we need high trust. That's a big, big gap right now for us.

27:57 Wes Reisz: Carin, thank you so much. I think we've been working on this since the end of last year. Thank you for working on this with me through the holidays and into the New Year. It was fun to sit down and chat finally.

28:07 Carin Meier: Thanks again.

Excerpt from:
Carin Meier Using Machine Learning to Combat Major Illness, such as the Coronavirus - InfoQ.com

Cloud Machine Learning Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper – KSU |…

Reports published inMarket Research Incfor the Cloud Machine Learning market are spread out over several pages and provide the latest industry data, market future trends, enabling products and end users to drive revenue growth and profitability. Industry reports list and study key competitors and provide strategic industry analysis of key factors affecting market dynamics. This report begins with an overview of the Cloud Machine Learning market and is available throughout development. It provides a comprehensive analysis of all regional and major player segments that provide insight into current market conditions and future market opportunities along with drivers, trend segments, consumer behavior, price factors and market performance and estimates over the forecast period.

Request a pdf copy of this report athttps://www.marketresearchinc.com/request-sample.php?id=39704

Key Strategic Manufacturers::Oracle Corporation , Google Inc, IBM, Alibaba Group, Microsoft Corporation, Amazon Web Services , Fair, Isaac

(Market Size & Forecast, Different Demand Market by Region, Main Consumer Profile etc

The report gives a complete insight of this industry consisting the qualitative and quantitative analysis provided for this market industry along with prime development trends, competitive analysis, and vital factors that are predominant in the Cloud Machine Learning Market.

The report also targets local markets and key players who have adopted important strategies for business development. The data in the report is presented in statistical form to help you understand the mechanics. The Cloud Machine Learning market report gathers thorough information from proven research methodologies and dedicated sources in many industries.

Avail 40% Discount on this report athttps://www.marketresearchinc.com/ask-for-discount.php?id=39704

Key Objectives of Cloud Machine Learning Market Report: Study of the annual revenues and market developments of the major players that supply Cloud Machine Learning Analysis of the demand for Cloud Machine Learning by component Assessment of future trends and growth of architecture in the Cloud Machine Learning market Assessment of the Cloud Machine Learning market with respect to the type of application Study of the market trends in various regions and countries, by component, of the Cloud Machine Learning market Study of contracts and developments related to the Cloud Machine Learning market by key players across different regions Finalization of overall market sizes by triangulating the supply-side data, which includes product developments, supply chain, and annual revenues of companies supplying Cloud Machine Learning across the globe.

Furthermore, the years considered for the study are as follows:

Historical year 2016-2020

Base year 2020

Forecast period 2021to 2029

Table of Content:

Cloud Machine Learning Market Research ReportChapter 1: Industry OverviewChapter 2: Analysis of Revenue by ClassificationsChapter 3: Analysis of Revenue by Regions and ApplicationsChapter 6: Analysis of Market Revenue Market Status.Chapter 4: Analysis of Industry Key ManufacturersChapter 5: Marketing Trader or Distributor Analysis of Market.Chapter 6: Development Trend of Cloud Machine Learning market

Continue for TOC

If You Have Any Query, Ask Our Experts:https://www.marketresearchinc.com/enquiry-before-buying.php?id=39704

About Us

Market Research Inc is farsighted in its view and covers massive ground in global research. Local or global, we keep a close check on both markets. Trends and concurrent assessments sometimes overlap and influence the other. When we say market intelligence, we mean a deep and well-informed insight into your products, market, marketing, competitors, and customers. Market research companies are leading the way in nurturing global thought leadership. We help your product/service become the best they can with our informed approach.

Contact Us

Market Research Inc

Kevin

51 Yerba Buena Lane, Ground Suite,

Inner Sunset San Francisco, CA 94103, USA

Call Us:+1 (628) 225-1818

Write Us@sales@marketresearchinc.com

https://www.marketresearchinc.com

View post:
Cloud Machine Learning Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper - KSU |...

Machine Learning and where is it used? – Tech Guide

Lately, there has been a lot of discussion about the direction in which artificial intelligence is going and how much good and bad it brings to us as humans. It is questionable if machine learning will, eventually, reach a stage where human minds might become obsolete.

But, there is one thing that we can say with certainty; there has been an exponential growth regarding artificial intelligence in the last couple of years. And, one of the main aspects of said intelligence is machine learning.

Machine learning can be found in many things today:

And, it is always with us. If you have ever allowed cookies on your device when visiting a website you have fed some sort of AI to engage in machine learning. For such a reason, this technology is bound to improve exponentially in the future.

What is Machine Learning?

Machine Learning is a subcategory of artificial intelligence whose goal is that the system itself. It is meant to recognize patterns, learn as much as possible from data, and do all that and provide solutions with minimal human intervention.

Like with everything else in life, there are certain steps that must be followed in order to perform a particular task. When it comes to this form of artificial intelligence, there are 5 basic steps:

And, unlike with human learning, the computer will cycle the steps tirelessly, providing sets of data for developers to know how to tweak performance or introduce new data.

Regretfully, without human input of contextualizing data and forming algorithms the AI itself wont know what to do with the resources it has gathered.

Forms of Machine Learning?

Generally, there are 2 main forms of machine learning.

Primarily, there is supervised learning. This is a subcategory of ML where the main goal for the algorithm is to provide adequate solutions for certain data. Most types of service software use this form to improve customer experience.

Then, there is unsupervised learning, where the algorithm is provided with only data and with no solutions. Such a system doesnt yet have direct market applications but is used to research AI and to understand how something can be developed natively.

Recommender Systems

This system functions by learning and collecting data, preferences, and interests of individual users, and thus offers services, ads, or products that are similar to what we have apparently liked before. Such automated action is saving us a lot of time and nerves, or at least is meant to.

For instance, Netflix is universally one of the most popular applications in the world for watching TV shows and movies. So if you are a user of this application, you have definitely seen a category called recommendations.

This category basically recommends you a variety of movies and shows that you would possibly enjoy based on what types of movies or shows you watched and liked. previously

Similarly, in the musical field ML is integrated by offering us new choices based on the genre we listened to before. With that information, it can recommend new songs and even entire playlists and mixes which we would potentially adore.

Another thing that we are all familiar with are games. Whether you are 7 or 77 years old, games will never go out of style.

Online gaming has been on such a rise lately and is one of the top activities in free time. So lets say you played wolfs treasure for a really long time. The machine learning algorithm will pick up on this and will recommend games of similar feature sets and volatility levels.

How is ML Present in Our Everyday Life?

There is no denying that artificial intelligence is basically everywhere and is one of the biggest innovations that made our lives better, happier, and more productive. Using machine learning is very popular in custom software development, as well as in a wide range of service software.

It is almost impossible to divide our smartphones from machine learning as it seems to be ever-present. We can find traces of the system from simple features like alarms and messaging, to very complex apps like navigation and entertainment recommendations.

Additionally, AI is also integral to both device and cybersecurity as well as for the use of AI assistants. Without the software knowing who we are and how we sound most wont be able to unlock our phones, let alone tell Siri to find us a burger joint.

With that being said, the chance that we use it in almost every aspect of our daily life without even realizing it is undeniable.

Read the rest here:
Machine Learning and where is it used? - Tech Guide

Machine Learning in Insurance Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper -…

The global research report titledMachine Learning in Insurancemarket was published byMarket Research Inc. The study elucidates current market statistics, in addition to underlying future predictions of the market. The research report has been compiled by means of effective techniques such as primary and secondary research methodologies. Top level industries are enlisted in order to obtain penetrative business insights. The companies profiled in this research report include erudite information on product types, features, capacity, and productivity.

Request a sample copy of this report @:

https://www.marketresearchinc.com/request-sample.php?id=31501

Top key players:State Farm, Liberty Mutual, Allstate, Progressive, Accenture

This report provides a comprehensive analysis of(Market Size & Forecast, Different Demand Market by Region, Main Consumer Profile etc

The geographical segmentation includes study of global regions such asNorth America, Latin America, Asia-Pacific, Africa, and Europe. The report also draws attention to recent advancements in technologies and certain methodologies which further help to boost the outcome of the businesses. Furthermore, it also offers a comprehensive data of cost structure such as the cost of manpower, tools, technologies, and cost of raw material. The report is an expansive source of analytical information of different business verticals such as type, size, applications, and end-users.

Get a reasonable discount on this premium report @:https://www.marketresearchinc.com/ask-for-discount.php?id=31501

The study also elaborates on growing futuristic opportunities in order to get a clear idea about global opportunities for theMachine Learning in Insurancesector. The report focuses on some significant questions faced by different stakeholders in the businesses. The study also address various risks and challenges faced by businesses during the forecast period.

Furthermore, it emphasizes on drivers and restraints, impacting the progress of theMachine Learning in Insurancemarket. The current competitive scenario has also been studied by examining the market situations of global as well as domestic market. Finally, it also sheds light on manufacturers or service providers for a better understanding of the market.

Further information:

https://www.marketresearchinc.com/enquiry-before-buying.php?id=31501

Key Objectives of Machine Learning in Insurance Market Report:

Study of the annual revenues and market developments of the major players that supply Machine Learning in Insurance Analysis of the demand for Machine Learning in Insurance by component Assessment of future trends and growth of architecture in the Machine Learning in Insurance market Assessment of the Machine Learning in Insurance market with respect to the type of application Study of the market trends in various regions and countries, by component, of the Machine Learning in Insurance market Study of contracts and developments related to the Machine Learning in Insurance market by key players across different regions Finalization of overall market sizes by triangulating the supply-side data, which includes product developments, supply chain, and annual revenues of companies supplying Machine Learning in Insurance across the globe.

About Us

Market Research Inc is farsighted in its view and covers massive ground in global research. Local or global, we keep a close check on both markets. Trends and concurrent assessments sometimes overlap and influence the other. When we say market intelligence, we mean a deep and well-informed insight into your products, market, marketing, competitors, and customers. Market research companies are leading the way in nurturing global thought leadership. We help your product/service become the best they can with our informed approach.

Contact Us

Market Research Inc

Kevin

51 Yerba Buena Lane, Ground Suite,

Inner Sunset San Francisco, CA 94103, USA

Call Us:+1 (628) 225-1818

Write Us@sales@marketresearchinc.com

https://www.marketresearchinc.com

Go here to read the rest:
Machine Learning in Insurance Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper -...

My Robot Brings All the Boys to the Yard, Its AI is Better than Yours – insideBIGDATA

In this special guest feature, Aviran Yaacov, CEO, and Co-founder of EcoPlant, believes that both AI and ML technologies are making impactful strides in manufacturing, and there is no time like the present for manufacturers to get on board and explore ways to transform their processes to benefit across all fronts. Aviran has over ten years of experience and expertise in operations, finance, sales, and people management in the IT industry. Before his current role, Aviran was a Senior Sales Executive for a SAP Business One integration firm. He is part of the management team in Ecoplant since it was established in 2016. From the bootstrapping stage, he oversaw business development in the company. He generated partnerships with Ecoplants solution with large corporations including Ecolab, Dannon, Nestle, Unilever, and Hill-Rom.

Robots and machines are already everywhere, especially in manufacturing. However, many experts predicted they would have advanced faster than they have. The truth is bringing automation and dynamic controlling into the physical world turned out to be much more challenging than was previously assumed. But with state-of-the-art AI and machine learning (ML) available today, the leaps are getting larger by the day. The technology might be new, but its implementation will have various effects on manufacturing.

Better than ever before

Thanks to AI and ML technologies, machines can now learn to handle a wide range of objects and tasks on their own. These enhancements are a far cry from the robots of yesteryear, which simply performed monotonous tasks. Machines are now capable of being endowed with greater levels of intelligence to acquire new skills autonomously, and to generalize unseen situations. Its a true game-changer for the manufacturing industry as a whole in the following ways:

Newer machines can now handle a much wider range of objects and tasks like never before. For instance, 3D industrial cameras are taken to new heights with the backing of AI, as it can help machines determine depth and distance, and general image recognition in a way that was formerly exclusive to the human eye.

Since ML closely resembles human learning, the need for human intervention (such as for the creation of new programs or updates) becomes reduced as the machines are capable of handling new parts on their own. Since information is generally stored on the cloud, robots can learn from each other through shared knowledge. As more data is gathered through operation, accuracy also increases and becomes more enhanced. This translates to less of a need for surrounding equipment (such as shaker tables and feeders) to be needed for each robot, which plays a major role in savings and scalability for manufacturers.

In addition to scalability, manufacturers can also enjoy the benefits of energy efficiency with machines that are optimized accordingly. Through the usage of predictive AI algorithms to conduct ongoing energy surveys and dynamically control each air compressor, and the whole system, manufacturers can dramatically reduce the carbon footprint of their facilities.

Humans and robots joining forces

Robots are now capable of doing far more than grasp and assemble objects. They can make their own decisions and solve problems based on their skill sets, while human operators solely focus on high-level commands. While these developments, paired with sci-fi movies, may make it appear as though robots are going to take over the world and take jobs away from humans, that isnt necessarily the case.

They simply help humans do their jobs better.

The best results come from the pairing of human intelligence with machine intelligence. Humans bring creativity and ingenuity, while industrial robots bring speed, strength, and accuracy. As summed up by Patrick Sobalvarro on WeForum, The idea of a fully automated lights-out factory with no production workersone requiring only machine programming and maintenancehas proven to be a dead end. So much of what happens in a factory requires human ingenuity, learning, and adaptability. As products have become more varied and customized to local markets and customer needs, the economics of full automation make no sense. With the support of necessary regulatory oversight, machines with AI-based components can also enable sustainable development, thereby helping manufacturers dramatically reduce the carbon footprint of their facilities.

The post-pandemic world sparked many changes in manufacturing, not only for the health and safety of workers, but also to ramp things up in supply chains in response to ever-changing market needs. In order to stay relevant and compete in the evolving global market, manufacturers need to transform the way they produce their products. The most complex challenges stem from demands for higher product variability, mass customization, quality expectations, and faster product cycles. This is all the more reason why manufacturing processes are faster, more efficient, and more cost-effective when humans and robots work together.

While the advantages of humans working together with robots were known well before the pandemic, the crisis made the pairing crucial as manufacturers began to reopen their facilities, for improved productivity, quality of output, and working conditions.

Both AI and ML technologies are making impactful strides in manufacturing, and there is no time like the present for manufacturers to get on board and explore ways to transform their processes to benefit across all fronts.

Sign up for the free insideBIGDATAnewsletter.

Join us on Twitter:@InsideBigData1 https://twitter.com/InsideBigData1

Visit link:
My Robot Brings All the Boys to the Yard, Its AI is Better than Yours - insideBIGDATA