Archive for May, 2020

How Shared Hope International Used Digital Tools to Fight Child Trafficking – Stanford Social Innovation Review

(Illustration by iStock/Andrii Vinnikov)

For the past 20 years, Shared Hope International has been working to bring justice to vulnerable adults and children who have survived and overcome sex trafficking. Our small but powerful team of 18 staffers has managed to secure a global network and reach, leading prevention strategies, restoration programs, and justice initiatives to combat trafficking in the United States and abroad.

Nonprofits need digital technology to meet todays pressing challenges and serve their communities. This collection of articles explores the ways in which the social sector can and already is applying a digital-first strategy to boost its effectiveness. Sponsored by Salesforce

One of the main ways we have been able to provide our life-changing services is through the passionate and generous support of our advocates, volunteers, and donors. But in 2016, we noticed a declining trend in donor support. We knew we needed a solution to reengage with supporters and strengthen our reach within our community. By leveraging the power of our technology systems, we have been able to transform, grow, and deepen our relationship with our supporters, and ultimately extend our efforts to raise awareness about the realities of child sex trafficking in communities across the nation.

Shared Hopes three-prong approach to battle sex traffickingawareness and prevention training, restoration and empowerment for victims, and justice through legislative advocacyis changing the way society recognizes and helps sex trafficking survivors. Training equips professionals and advocates in the field with skills to increase the identification of people who are vulnerable to and exploited by trafficking. We provide a range of restoration services to victimsboth directly and through support from other service organizationsthat include safe homes, medical care, education, vocational training, therapy, outreach, and intervention services. In addition, our team of attorneys works with legislators at both the federal and state level to accelerate policy actions that protect victims and hold offenders accountable.

A national network of supporters raises money and works alongside Shared Hope to make these programs possible. One-hundred percent of our financial backers are private donors, and many of our donors have been with us since day one, 21 years ago.

Due to the increase in anti-trafficking organizations opening their doors, many of which Shared Hope provided training and support to, we experienced a severe decline in our number of supporters between 2014 and 2016. In order to survive as an organization, we urgently needed a strategy to restore relationships. After a deep dive into our supporters profiles, we quickly recognized that we needed tools to get to know them better, offer more meaningful engagement, and target them with bespoke strategies. When we realized our customer relationship management (CRM) system wasnt meeting our needs, we turned to Salesforce. It had just what we needed: scalability, the ability to customize, and compatibility with a lot of other technologies that we wanted to use. Now, four years into the use of the system, weve seen a dramatic turnaround.

After transitioning our CRM, Shared Hope reexamined our supporter outreach and landed on three strategies. First, we would raise awareness of the warning signs of trafficking and how to respond with effective, easy to share tools. Second, we would offer meaningful experiences for supporters through the pathways of advocacy, volunteering, and giving. Third, we would maintain our multiyear supporters at a high retention rate, increase new leads and supporters, and reengage lapsed donors.

We began by segmenting our supporters in order to tailor communications and outreach. With the depth and breadth of our CRM, we have been able to build out a fuller picture of donor profiles, including their history of engagement with Shared Hope. Different giving levels are associated with a targeted engagement plan and actionable daily task lists that staff can review and complete. This segmenting has even helped our staff, board of directors, and volunteers to become more hands-on, enabling them to participate in annual phone call campaigns to reach out and thank all of our supporters. For individuals whose support has lapsed, a monthly email and regular calls highlight opportunities to reengage with Shared Hope. These customized supporter messages are organized and automated in our marketing systems engagement studio, Pardot, which was recently acquired by Salesforce and is offered on its AppExchange.

In addition to targeting our supporters by giving level, Shared Hope curates communications around particular programs and interests. Supporters who are interested in policy work, for example, receive targeted emails about our work and events around legislative initiatives. Onboarding new supporters has also improved; new contacts automatically receive a series of introductory emails describing Shared Hopes work and opportunities to get involved. Thanks to segmentation, we can create scripted outreach and build a foundation for conversations we werent able to have before.

Were also able to collect important insights about our media mix strategy. Our marketing system tracks how individuals come to Shared Hopes website through our various media channels, which we use to adjust and strengthen new lead and supporter acquisition strategies.

With our up-to-date information, we can now be strategic about how we engage and communicate with every single supporter in our system.

Our supporters do more than just donate. We have more than 1,100 volunteers, called Ambassadors of Hope, who provide prevention education to communities and youth across 49 states and Washington, DC. In order to support and manage a large volunteer force well, we use our CRM to track contact information, resource requests, volunteer tasks, and hours. In addition, we can build a picture of our volunteer networkstracking new supporters recruited by current volunteersand highlight outreach and awareness opportunities in volunteers communities.

We also invested time in developing new tools, using Shared Hopes research and expertise that can be easily and quickly consumed and shared by our network of volunteers, donors, and the general public. Some of these new tools include:

Another group of our volunteers, called Grassroots Heroes, amplifies our work in legislative advocacy. Individuals who support our campaigns can sign up to send preformatted tweets and emails to their federal and state legislators through Phone2Action (an AppExchange integrated application). Phone2Action automatically imports contact information for these supporters into our CRM and marketing systems, which frees up valuable time and labor for staff members. Single campaigns, including Shared Hopes work to circulate petitions and information around the 2018 clemency case of Cyntoia Brown in Tennessee, gathered 4,500 names in a six-month period. And in 2019, our Grassroots Heroes used our Advocacy Action Center to make 8,798 connections with their legislators and raise their voices for stronger state laws. Every year, Shared Hope grades states on the strength of their laws and how well they protect victims and hold offenders accountable. We saw 10 states raise their grades in 2019, and we have our grassroots advocates to thank for helping our policy team make such strong progress.

During the first quarter of 2020, Shared Hope introduced our Weekend Warrior initiative, which aims to equip busy supporters with weekly, easy-to-share tools that can fight child sex trafficking in 15 minutes or less. By connecting digital ads about the initiative to our marketing system, in just six weeks we brought onboard 765 new advocates across the countrywhich means we also brought in 765 new supporter leads. We anticipate that this group of supporters will grow as we equip them with meaningful tools and provide easy pathways for them to engage with their families, friends, and colleagues.

Our more personalized and strategic outreach and engagement has also paid off, as weve seen our new support acquisition increase by 37 percent since fiscal year 2016-2017a rise of $368,070. Weve also increased our total supporters by 19 percent, and were maintaining multiyear supporters at a rate of 80-plus percent.

Next up, we placed our focus on expanding critical programs, with plans for staff to collaborate with national leaders, field experts, and our supporters on training, legislative advocacy, and policy work at Shared Hopes Institute for Justice and Advocacy. The institute will enable Shared Hope to dig even deeper on the issue of child sex trafficking, its causes, and solutions. Our expanded, more aggressive stance means taking on emerging challenges as they come. We just opened the doors of the institute on January 23, 2020, in the heart of Washington, DC, strategically located two blocks from the White House. We own the property debt-free thanks to a successful $2.8 million, five-month capital campaign completed in 2019.

With the doors of the institute open and our scope of work ever-expanding, we are certain our strengthened relationships with our advocates, volunteers, and donor community will continue to help us achieve our mission. Years from now, we will look back on this time and say, Thats when the tide truly turned; thats when the eradication of sex trafficking dramatically accelerated.

Original post:
How Shared Hope International Used Digital Tools to Fight Child Trafficking - Stanford Social Innovation Review

Quantum computing analytics: Put this on your IT roadmap – TechRepublic

Quantum is the next step toward the future of analytics and computing. Is your organization ready for it?

Quantum computing can solve challenges that modern computers can't--or it might take them a billion years to do so. It can crack any encryption and make your data completely safe. Google reports that it has seen a quantum computer that performed at least 100 million times faster than any classical computer in its lab.

Quantum blows away the processing of data and algorithms on conventional computers because of its ability to operate on electrical circuits that can be in more than one state at once. A quantum computer operates on Qubits (quantum bits) instead of on the standard bits that are used in conventional computing.

SEE: Managing AI and ML in the enterprise 2020: Tech leaders increase project development and implementation (TechRepublic Premium)

Quantum results can quickly make an impact on life science and pharmaceutical companies, for financial institutions evaluating portfolio risks, and for other organizations that want to expedite time-to-results for processing that on conventional computing platforms would take days to complete.

Few corporate CEOs are comfortable trying to explain to their boards what quantum computing is and why it is important to invest in it.

"There are three major areas where we see immediate corporate engagement with quantum computing," said Christopher Savoie, CEO and co-founder of Zapata Quantum Computing Software Company, a quantum computing solutions provider backed by Honeywell. "These areas are machine learning, optimization problems, and molecular simulation."

Savoie said quantum computing can bring better results in machine learning than conventional computing because of its speed. This rapid processing of data enables a machine learning application to consume large amounts of multi-dimensional data that can generate more sophisticated models of a particular problem or phenomenon under study.

SEE: Forget quantum supremacy: This quantum-computing milestone could be just as important (TechRepublic)

Quantum computing is also well suited for solving problems in optimization. "The mathematics of optimization in supply and distribution chains is highly complex," Savoie said. "You can optimize five nodes of a supply chain with conventional computing, but what about 15 nodes with over 85 million different routes? Add to this the optimization of work processes and people, and you have a very complex problem that can be overwhelming for a conventional computing approach."

A third application area is molecular simulation in chemistry and pharmaceuticals, which can be quite complex.

In each of these cases, models of circumstances, events, and problems can be rapidly developed and evaluated from a variety of dimensions that collate data from many diverse sources into a model.

SEE:Inside UPS: The logistics company's never-ending digital transformation (free PDF)(TechRepublic)

"The current COVID-19 crisis is a prime example," Savoie said. "Bill Gates knew in 2015 that handling such a pandemic would present enormous challengesbut until recently, we didn't have the models to understand the complexities of those challenges."

For those engaging in quantum computing and analytics today, the relative newness of the technology presents its own share of glitches. This makes it important to have quantum computing experts on board. For this reason, most early adopter companies elect to go to the cloud for their quantum computing, partnering with a vendor that has the specialized expertise needed to run and maintain quantum analytics.

SEE: Rural America is in the midst of a mental health crisis. Tech could help some patients see a way forward. (cover story PDF) (TechRepublic)

"These companies typically use a Kubernetes cluster and management stack on premises," Savoie said. "They code a quantum circuit that contains information on how operations are to be performed on quantum qubits. From there, the circuit and the prepared data are sent to the cloud, which performs the quantum operations on the data. The data is processed in the cloud and sent back to the on-prem stack, and the process repeats itself until processing is complete."

Savoie estimated that broad adoption of quantum computing for analytics will occur within a three- to five-year timeframe, with early innovators in sectors like oil and gas, and chemistry, that already understand the value of the technology and are adopting sooner.

"Whether or not you adopt quantum analytics now, you should minimally have it on your IT roadmap," Savoie said. "Quantum computing is a bit like the COVID-19 crisis. At first, there were only two deaths; then two weeks later, there were ten thousand. Quantum computing and analytics is a highly disruptive technology that can exponentially advance some companies over others."

Learn the latest news and best practices about data science, big data analytics, and artificial intelligence. Delivered Mondays

Image: sakkmesterke, Getty Images/iStockphoto

More here:
Quantum computing analytics: Put this on your IT roadmap - TechRepublic

Seeqc UK Awarded 1.8M in Grants to Advance Quantum Computing Initiatives – HPCwire

LONDON Seeqc, the Digital Quantum Computing company, announced its UK team has been selected to receive two British grants totaling 1.8 million (~$2.1 million) from Innovate UKs Industrial Challenge Strategy Fund.

Quantum Foundry

The first 800,000 grant from Innovate UK is part of a 7M project dedicated to advancing the commercialization of superconducting technology. Its goal is to bring quantum computing closer to business-applicable solutions, cost-efficiently and at scale.

Seeqc UK is joining six UK-based companies and universities in a consortium to collaborate on the initiative. This is the first concerted effort to bring all leading experts across industry and academia together to advance the development of quantum technologies in the UK.

Othergrant recipientsinclude Oxford Quantum Circuits, Oxford Instruments, Kelvin Nanotechnology, University of Glasgow and the Royal Holloway University of London.

Quantum Operating System

The second 1 million grant is part of a 7.6 million seven-organization consortium dedicated to advancing the commercialization of quantum computers in the UK by building a highly innovative quantum operating system. A quantum operating system, Deltaflow.OS, will be installed on all quantum computers in the UK in order to accelerate the commercialization and collaboration of the British quantum computing community. The universal operating system promises to greatly increase the performance and accessibility of quantum computers in the UK.

Seeqc UK is joined by othergrant recipients, Riverlane, Hitachi Europe, Universal Quantum, Duality Quantum Photonics, Oxford Ionics, and Oxford Quantum Circuits, along with UK-based chip designer, ARM, and the National Physical Laboratory.

Advancing Digital Quantum Computing

Seeqc owns and operates a multi-layer superconductive electronics chip fabrication facility, which is among the most advanced in the world. The foundry serves as a testing and benchmarking facility for Seeqc and the global quantum community to deliver quantum technologies for specific use cases. This foundry and expertise will be critical to the success of the grants. Seeqcs Digital Quantum Computing solution is designed to manage and control qubits in quantum computers in a way that is cost-efficient and scalable for real-world business applications in industries such as pharmaceuticals, logistics and chemical manufacturing.

Seeqcs participation in these new industry-leading British grants accelerates our work in making quantum computing useful, commercially and at scale, said Dr. Matthew Hutchings, chief product officer and co-founder at Seeqc, Inc. We are looking forward to applying our deep expertise in design, testing and manufacturing of quantum-ready superconductors, along with our resource-efficient approach to qubit control and readout to this collaborative development of quantum circuits.

We strongly support the Deltaflow.OS initiative and believe Seeqc can provide a strong contribution to both consortiums work and advance quantum technologies from the lab and into the hands of businesses via ultra-focused and problem-specific quantum computers, continued Hutchings.

Seeqcs solution combines classical and quantum computing to form an all-digital architecture through a system-on-a-chip design that utilizes 10-40 GHz superconductive classical co-processing to address the efficiency, stability and cost issues endemic to quantum computing systems.

Seeqc is receiving the nearly $2.3 million in grant funding weeks after closing its $6.8 million seed round from investors including BlueYard Capital, Cambium, NewLab and the Partnership Fund for New York City. The recent funding round is in addition to a $5 million investment from M Ventures, the strategic corporate venture capital arm of Merck KGaA, Darmstadt, Germany.

About Seeqc

Seeqc is developing the first fully digital quantum computing platform for global businesses. Seeqc combines classical and quantum technologies to address the efficiency, stability and cost issues endemic to quantum computing systems. The company applies classical and quantum technology through digital readout and control technology and a unique chip-scale architecture. Seeqcs quantum system provides the energy- and cost-efficiency, speed and digital control required to make quantum computing useful and bring the first commercially-scalable, problem-specific quantum computing applications to market.

Source: Seeqc

The rest is here:
Seeqc UK Awarded 1.8M in Grants to Advance Quantum Computing Initiatives - HPCwire

Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering – HPCwire

LOS ALAMITOS, Calif.,May 14, 2020 Registration is now open for the inauguralIEEE International Conference on Quantum Computing and Engineering (QCE20), a multidisciplinary event focusing on quantum technology, research, development, and training. QCE20, also known as IEEE Quantum Week, will deliver a series ofworld-class keynotes,workforce-building tutorials,community-building workshops, andtechnical paper presentations and postersonOctober 12-16inDenver, Colorado.

Were thrilled to open registration for the inaugural IEEE Quantum Week, founded by the IEEE Future Directions Initiative and supported by multiple IEEE Societies and organizational units, said Hausi Mller, QCE20 general chair and co-chair of the IEEE Quantum Initiative.Our initial goal is to address the current landscape of quantum technologies, identify challenges and opportunities, and engage the quantum community. With our current Quantum Week program, were well on track to deliver a first-rate quantum computing and engineering event.

QCE20skeynote speakersinclude the following quantum groundbreakers and leaders:

The week-longQCE20 tutorials programfeatures 15 tutorials by leading experts aimed squarely at workforce development and training considerations. The tutorials are ideally suited to develop quantum champions for industry, academia, and government and to build expertise for emerging quantum ecosystems.

Throughout the week, 19QCE20 workshopsprovide forums for group discussions on topics in quantum research, practice, education, and applications. The exciting workshops provide unique opportunities to share and discuss quantum computing and engineering ideas, research agendas, roadmaps, and applications.

The deadline for submittingtechnical papersto the eight technical paper tracks isMay 22. Papers accepted by QCE20 will be submitted to the IEEE Xplore Digital Library. The best papers will be invited to the journalsIEEE Transactions on Quantum Engineering(TQE)andACM Transactions on Quantum Computing(TQC).

QCE20 provides attendees a unique opportunity to discuss challenges and opportunities with quantum researchers, scientists, engineers, entrepreneurs, developers, students, practitioners, educators, programmers, and newcomers. QCE20 is co-sponsored by the IEEE Computer Society, IEEE Communications Society, IEEE Council on Superconductivity,IEEE Electronics Packaging Society (EPS), IEEE Future Directions Quantum Initiative, IEEE Photonics Society, and IEEETechnology and Engineering Management Society (TEMS).

Registerto be a part of the highly anticipated inaugural IEEE Quantum Week 2020. Visitqce.quantum.ieee.orgfor event news and all program details, including sponsorship and exhibitor opportunities.

About the IEEE Computer Society

The IEEE Computer Society is the worlds home for computer science, engineering, and technology. A global leader in providing access to computer science research, analysis, and information, the IEEE Computer Society offers a comprehensive array of unmatched products, services, and opportunities for individuals at all stages of their professional career. Known as the premier organization that empowers the people who drive technology, the IEEE Computer Society offers international conferences, peer-reviewed publications, a unique digital library, and training programs. Visitwww.computer.orgfor more information.

About the IEEE Communications Society

TheIEEE Communications Societypromotes technological innovation and fosters creation and sharing of information among the global technical community. The Society provides services to members for their technical and professional advancement and forums for technical exchanges among professionals in academia, industry, and public institutions.

About the IEEE Council on Superconductivity

TheIEEE Council on Superconductivityand its activities and programs cover the science and technology of superconductors and their applications, including materials and their applications for electronics, magnetics, and power systems, where the superconductor properties are central to the application.

About the IEEE Electronics Packaging Society

TheIEEE Electronics Packaging Societyis the leading international forum for scientists and engineers engaged in the research, design, and development of revolutionary advances in microsystems packaging and manufacturing.

About the IEEE Future Directions Quantum Initiative

IEEE Quantumis an IEEE Future Directions initiative launched in 2019 that serves as IEEEs leading community for all projects and activities on quantum technologies. IEEE Quantum is supported by leadership and representation across IEEE Societies and OUs. The initiative addresses the current landscape of quantum technologies, identifies challenges and opportunities, leverages and collaborates with existing initiatives, and engages the quantum community at large.

About the IEEE Photonics Society

TheIEEE Photonics Societyforms the hub of a vibrant technical community of more than 100,000 professionals dedicated to transforming breakthroughs in quantum physics into the devices, systems, and products to revolutionize our daily lives. From ubiquitous and inexpensive global communications via fiber optics, to lasers for medical and other applications, to flat-screen displays, to photovoltaic devices for solar energy, to LEDs for energy-efficient illumination, there are myriad examples of the Societys impact on the world around us.

About the IEEE Technology and Engineering Management Society

IEEE TEMSencompasses the management sciences and practices required for defining, implementing, and managing engineering and technology.

Source: IEEE Computer Society

See the original post here:
Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering - HPCwire

David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science – Quantaneo, the Quantum Computing…

Graves, a professor at the University of California, Berkeley, since 1986, is an expert in plasma applications in semiconductor manufacturing. He will become the Princeton Plasma Physics Laboratorys (PPPL) first associate laboratory director for Low-Temperature Plasma Surface Interactions, effective June 1. He will likely begin his new position from his home in Lafayette, California, in the East Bay region of San Francisco.

He will lead a collaborative research effort to not only understand and measure how plasma is used in the manufacture of computer chips, but also to explore how plasma could be used to help fabricate powerful quantum computing devices over the next decade.

This is the apex of our thrust into becoming a multipurpose lab, said Steve Cowley, PPPL director, who recruited Graves. Working with Princeton University, and with industry and the U.S. Department of Energy (DOE), we are going to make a big push to do research that will help us understand how you can manufacture at the scale of a nanometer. A nanometer, one-billionth of a meter, is about ten thousand times less than the width of a human hair.

The new initiative will draw on PPPLs expertise in low temperature plasmas, diagnostics, and modeling. At the same time, it will work closely with plasma semiconductor equipment industries and will collaborate with Princeton University experts in various departments, including chemical and biological engineering, electrical engineering, materials science, and physics. In particular, collaborations with PRISM (the Princeton Institute for the Science and Technology of Materials) are planned, Cowley said. I want to see us more tightly bound to the University in some areas because that way we get cross-fertilization, he said.

Graves will also have an appointment as professor in the Princeton University Department of Chemical and Biological Engineering, starting July 1. He is retiring from his position at Berkeley at the end of this semester. He is currently writing a book (Plasma Biology) on plasma applications in biology and medicine. He said he changed his retirement plans to take the position at PPPL and Princeton University. This seemed like a great opportunity, Graves said. Theres a lot we can do at a national laboratory where theres bigger scale, world-class colleagues, powerful computers and other world-class facilities.

Exciting new direction for the Lab

Graves is already working with Jon Menard, PPPL deputy director for research, on the strategic plan for the new research initiative over the next five years. Its a really exciting new direction for the Lab that will build upon our unique expertise in diagnosing and simulating low-temperature plasmas, Menard said. It also brings us much closer to the university and industry, which is great for everyone.

The staff will grow over the next five years and PPPL is recruiting for an expert in nano-fabrication and quantum devices. The first planned research would use converted PPPL laboratory space fitted with equipment provided by industry. Subsequent work would use laboratory space at PRISM on Princeton Universitys campus. In the longer term, researchers in the growing group would have brand new laboratory and office space as a central part the Princeton Plasma Innovation Center (PPIC), a new building planned at PPPL.

Physicists Yevgeny Raitses, principal investigator for the Princeton Collaborative Low Temperature Plasma Research Facility (PCRF) and head of the Laboratory for Plasma Nanosynthesis, and Igor Kavanovich, co-principal investigator of PCRF, are both internationally-known experts in low temperature plasmas who have forged recent partnerships between PPPL and various industry partners. The new initiative builds on their work, Cowley said.

A priority research area

Research aimed at developing quantum information science (QIS) is a priority for the DOE. Quantum computers could be very powerful in solving complex scientific problems, including simulating quantum behavior in material or chemical systems. QIS could also have applications in quantum communication, especially in encryption, and quantum sensing. It could potentially have an impact in areas such as national security. A key question is whether plasma-based fabrication tools commonly used today will play a role in fabricating quantum devices in the future, Menard said. There are huge implications in that area, Menard said. We want to be part of that.

Graves is an expert on applying molecular dynamics simulations to low temperature plasma-surface interactions. These simulations are used to understand how plasma-generated ions, atoms and molecules interact with various surfaces. He has extensive research experience in academia and industry in plasma-related semiconductor manufacturing. That expertise will be useful for understanding how to make very fine structures and circuits at the nanometer, sub-nanometer and even atom-by-atom level, Menard said. Davids going to bring a lot of modeling and fundamental understanding to that process. That, paired with our expertise and measurement capabilities, should make us unique in the U.S. in terms of what we can do in this area.

Graves was born in Daytona Beach, Florida, and moved a lot as a child because his father was in the U.S. Air Force. He lived in Homestead, Florida; near Kansas City, Missouri; and in North Bay Ontario; and finished high school near Phoenix, Arizona.

Graves received bachelors and masters degrees in chemical engineering from the University of Arizona and went on to pursue a doctoral degree in the subject, graduating with a Ph.D. from the University of Minnesota in 1986. He is a fellow of the Institute of Physics and the American Vacuum Society. He is the author or co-author of more than 280 peer-reviewed publications. During his long career at Berkeley, he has supervised 30 Ph.D. students and 26 post-doctoral students, many of whom are now in leadership positions in industry and academia.

A leader since the 1990s

Graves has been a leader in the use of plasma in the semiconductor industry since the 1990s. In 1996, he co-chaired a National Research Council (NRC) workshop and co-edited the NRCs Database Needs for Modeling and Simulation of Plasma Processing. In 2008, he performed a similar role for a DOE workshop on low-temperature plasmas applications resulting in the report Low Temperature Plasma Science Challenges for the Next Decade.

Graves is an admitted Francophile who speaks (near) fluent French and has spent long stretches of time in France as a researcher. He was named Matre de Recherche (master of research) at the cole Polytechnic in Palaiseau, France, in 2006. He was an invited researcher at the University of Perpignan in 2010 and received a chaire dexcellence from the Nanoscience Foundation in Grenoble, France, to study plasma-graphene interactions.

He has received numerous honors during his career. He was appointed the first Lam Research Distinguished Chair in Semiconductor Processing at Berkeley for 2011-2016. More recently, he received the Will Allis Prize in Ionized Gas from the American Physical Society in 2014 and the 2017 Nishizawa Award, associated with the Dry Process Symposium in Japan. In 2019, he was appointed foreign expert at Huazhong University of Science and Technology in Wuhan, China. He served as the first senior editor of IEEE Transactions on Radiation and Plasma Medical Science.

Graves has been married for 35 years to Sue Graves, who recently retired from the City of Lafayette, where she worked in the school bus program. The couple has three adult children. Graves enjoys bicycling and yoga and the couple loves to travel. They also enjoy hiking, visiting museums, listening to jazz music, and going to the theater.

Visit link:
David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science - Quantaneo, the Quantum Computing...